
A Performance Improvement Method for the Global Live Migration
of Virtual Machine with IP Mobility

Hidenobu Watanabe†, Toshihiro Ohigashi‡, Tohru Kondo‡, Kouji Nishimura‡, and Reiji Aibara‡

†Graduate School of Integrated Arts and Sciences, Hiroshima University
1-7-1, Kagamiyama, Higashi-Hiroshima-Shi, Hiroshima, 739-8521, Japan, h-watanabe@hiroshima-u.ac.jp

‡Information Media Center, Hiroshima University,{ohigashi,tkondo,kouji,ray}@hiroshima-u.ac.jp

ABSTRACT

Virtual machine (VM) live migration, which is the ability
to move a VM from one physical host to another under hy-
pervisor control without suspending for a long time, is a ca-
pability being increasingly utilized. With IP mobility, a capa-
bility for migrating VMs among distributed sites is provided.
We call it the global live migration. However, it affects an
application program on a VM compared with ordinary live
migration limited a local link. This problem is caused by IP
mobility process is executed after migrating. In the proposed
method, the source host executes the network configuration
before migrating, which sets destination network information
previously to the secondary interface of a VM. The method
can reduce the number of steps for IP mobility process af-
ter migrating. We have implemented the prototype, and have
evaluated our method quantitatively. By the evaluation exper-
iment, we have confirmed that a VM’s application downtime
during the global live migration is less than 1 second.

Keywords: virtualization, IP mobility, live migration, fast
migration

1 INTRODUCTION

A virtualization technology such as VMware [1] or Xen
[2] is widely used for electric power saving or usability im-
provement. It has the special architecture, which a software
(called Virtual Machine Monitor or Hypervisor) is interposed
between hardware and OS. The technology enables multiple
Virtual Machines (VMs) to activate simultaneously on a phys-
ical host. In addition, a virtualization supports live migra-
tion [3] as sophisticated VM migration. VM migration is the
ability to move a VM from one physical host (source host)
to another (destination host) on the local link. Live migra-
tion enables an application program on a VM to keep running
without significantly impacting the application. In this paper,
application downtime is denoted byTDW .

E. Harney et al. [4] have been proposed the advanced func-
tion for Xen’s live migration. The function enables a VM
to migrate among distributed sites. We call itthe global live
migration. They have implemented the Mobility Support in
IPv6 (MIP6) [5] to the VM itself. Thus, an application on the
VM does not notice the conflicted connection between the
migrated VM and the destination host. In other words, this
method can shift ordinary live migration to the global live mi-
gration. We call this methodthe VM with IP mobility.

However, when the VM with IP mobility is used, the global
live migration affects an application program on a VM than
ordinary live migration. Namely, a VM suspends more than
a few seconds during the global live migration despiteTDW

of ordinary live migration is less than 0.5 second. Therefore,
IP mobility for the global live migration increasesTDW in
exchange for migrating over the Internet. This problem is
caused by IP mobility process is executed after migrating.
Currently, no one proposes the solved method for this prob-
lem.

We aim at bringingTDW of the global live migration close
to 0.5 second. In our method, the source host executes the net-
work configuration before migrating. Namely, it sets destina-
tion network information previously to one of the interfaces
of a VM. After migrating, the destination host just switches
to the interface with destination network information. As the
result, the global live migration’sTDW is almost the same as
time of 0.5 second.

The rest of this paper is structured as follows. Section 2
discusses superiority of the VM with IP mobility and an IP
mobility architecture used in our method. In addition, we in-
troduce existing techniques for improving the performance of
live migration, and we show the purpose of our research. Sec-
tion 3 illustrates the architecture and the mechanism of the
proposed method. We consider efficacy of our method based
on the experimental result in Section 4. Section 5 summarizes
conclusion and introduce our future work.

2 RELATED WORK

We illustrate the mechanism and two assignments of live
migration. VM migration, which is the ability to pretend as if
a VM migrated, copies the memory image of a VM from the
source host to the destination host after suspending the VM.
Live migration, which is able to provide that the suspended
time of a VM is nearly zero second, ensures a work memory
for restoring state of a memory image. Then, it copies a mem-
ory image and memory pages before suspending. A memory
page is different between an original memory image and a
new memory image during the copy process. The source host
keeps copying memory pages until one of two requirements
are met. One is that when the VM’s memory image was al-
most copied at the destination host. The other is that when
copy frequency reached a limiting value. Finally, live migra-
tion copies a last memory page after suspending a VM. Thus,
TDW of ordinary live migration is the time taken for copying

a last memory page, and it is less than 0.5 second introduced
in [2].

On the other hand, live migration has two assignments.
One is the migration range. IP address of a VM does not
change after migrating. When a VM migrated to the destina-
tion host, the virtual link between the migrated VM and the
destination host becomes conflicted state. Thus, ordinary live
migration recommends that the migration range is limited to a
local link. We think that the global live migration can realize
by solving this assignment. The other is fast migration. Live
migration increases the total time than VM migration. The
total time is the amount of time from the command execution
of live migration at the source host to the VM reactivates on
the destination host. In this paper, the total time is denoted
by TALL. If virtual memory state keeps changing, copy fre-
quency of memory pages keeps increasing until one of two
requirements are met. As the result, live migration expands
TALL, and it increases network traffic too. Thus, the copy
process of memory pages becomes of particular importance
in order to realize fast migration. We introduce some related
works to these assignments.

2.1 System Model for the Global Live
Migration

We introduce three system models for the global live mi-
gration, and we discuss superiority of the adopted model based
on two situations. One of situation is that many VMs are
used. The other is that the global live migration is executed
frequently.

The first, F. Travostino et al. [6] have proposed the model
that some network nodes provide IP mobility. These nodes
have a task given respectively. For example, there are the mi-
gration support server and the agent server. Former provides
the optimum the lightpath between hosts for migrating. The
latter provisions some network resources and re-provisions an
IP tunnel. This model is able to control live migration dy-
namic by network nodes without extending hosts and VMs.
However, it has to establish IP tunnels every time when VMs
migrated. This approach consumes many resources of hosts.
In addition, it inflicts a burden on the host itself. Thus, judg-
ing from situations to be considered, we think that this model
does not suit from the standpoint of utility and efficiency.

The second, L. Qin et al. [7] have proposed the model that
hypervisor provides IP mobility, called HyperMIP. They im-
plemented the IP Mobility Support for IPv4 [8] (MIP4) to hy-
pervisor. Thus, HyperMIP can provide the function like the
Home Agent (HA) for all VMs on the host. This architecture
is similar to the Proxy Mobile IPv6 [9] (PMIP). This model
needs not to extend VMs, and it enables the global live migra-
tion performance to improve by operating hypervisor directly.
However, HyperMIP must relay all packets for each VM, and
it must allocate IPv4 address for all migrated VMs. These
functions inflict a huge load on the host itself. In addition, we
consider that a VM is hard to migrate between hypervisors be-
longing to different HA since MN can only establish IP tunnel
with set HA in MIP4. This point is sufficiently discussed in

[7]. Therefore, judging from situations to be considered, we
think that this model is not the best model from view points
of fault tolerance and an overhead of hypervisor.

The third, E. Harney et al. [4] have proposed the model that
the VM provides IP mobility. They have implemented MIP6
[5] to a VM itself. In this model, a VM can communicate as
an end host through the optimum route. Then, the destination
host needs not to execute some IP mobility processes such as
the IP packet relay. In fact, the model can decrease the pos-
sibility that the host chokes up. Also, the host can manage
multiple migrated VMs at the same time since each VM ex-
ecutes network management. On the other hand, this model
request to implement IP mobility in the communicating node.
If the client machine does not introduce IP mobility, users can
not get a service provided by the VM. However, when two sit-
uations are considered, we consider that this restriction does
not become a huge issue than problems of above two models.
Therefore, we think the model is better than two models as
the system model of the global live migration.

2.2 IP Mobility Architecture

We describe the problem of MIP6 in the global live migra-
tion, and we introduce the Mobility Support Architecture and
Technologies (MAT) [10]. We use MAT as an IP mobility
architecture.

MIP6 has the ability to provide the proposed method by ex-
tension to use multiple interfaces. In MIP6, HA is set as the
fixed node, and the node with MIP6 can communicate with
the communicating node without MIP6 through HA. In MAT,
all communication nodes must include MAT. MIP6 has the
advantage over MAT on this point. However, the communi-
cation route is not best when HA is used. MIP6 can use the
route optimization method without going through HA, but the
method requests IP tunnel. IP tunnel causes increment for IP
header length. In some applications such as IP phone or tele-
conference system, over 32 bytes IP header has possible to
become fatal overhead. Therefore, we adopted MAT as IP
mobility architecture.

MAT provides communication between end hosts without
HA. In MAT, a moving node including the MAT kernel is
called as Mobile Node (MN). A node communicating with
MN is called as Correspondent Node (CN). MN uses two IP
addresses called the Home Address (HoA) and the Mobile
Address (MoA). The HoA is an IPv6 address used perma-
nently in an application. The MoA is the temporary IPv6
address allocated every time when MN migrated. After al-
locating the MoA, MN updates to the IP Address Mapping
Server (IMS)1. This process is called the IMS update, and it
is executed for ensuring the consistency between a HoA and
a MoA. Also, the kernel translates a source IP address or a
destination IP address in IP packets appropriately. Thus, the
mapping information of two IP addresses is managed by not
HA but IMS, and reachability of IP packets is provided by
MN itself. As well, in MIP6, the process for establishing an
IP tunnel is added further after finishing the updating process.

1IMS differs from the IP Multimedia Subsystem in this paper.

Thus, MAT has the advantage in that the process work re-
quested for IP mobility is fewer than MIP6 though it has the
disadvantage in that CN must include MAT function.

2.3 Fast Migration

We discuss fast migration of live migration and the global
live migration. T. Hirofuchi et al. [11] and M. R. Hines et al.
[12] have proposed methods independently for migrating fast.
These methods have a future that memory pages are posted by
the destination host. Namely, the source host suspends a VM,
and it immediately begins live migration. Then, the copy pro-
cess of memory pages is executed at the destination host. We
call this methodthe post-copy. This approach enablesTALL

to shorten in exchange for inflicting a load of the migrated
VM. They aim atTALL of about 1 second. Thus, we define
the requirement of fast migration as thatTALL is about 1 sec-
ond.

On the other hand, the global live migration by [4], [7] can-
not meet this requirement. E. Harney et al. [4] have intro-
duced that the time required for IP mobility after migrating
is 8 seconds when the storage is not shared. In fact,TALL

becomes more than 8 seconds in this case. They have not re-
ferred to the problem. L. Qin et al. [7] have cared aboutTDW .
They have realized stableTDW by reducing a load of the host
itself. In Xen, hypervisor confirms whether the MAC address
of a VM overlaps. At this time, it broadcasts ARP packets to
all network nodes on a local link. In HyperMIP, ARP packets
are transferred to only some network nodes needed to update
the ARP table. As the result, network restoration latency can
reduce. Although,TDW is 3.2 seconds at a minimum. Thus,
TALL becomes more than 3 seconds in this case.

The proposed method is the method to provide performance
nearly ordinary live migration for the global live migration.
Namely, it realizes the global live migration thatTDW closes
to 0.5 second. Also, we think a streaming service as an ap-
plication of the global live migration. A VM has a special
function such as the Multi point Control Unit (MCU), and
data stream is transferred to all users by the VM. The global
live migration will be used for relocating the VM dynamic to
the suitable position based on network condition among users.
Therefore, it is essential to realizeTDW of less than 1 second
in order to improve performance of the global live migration
for providing the application like a streaming.

3 PROPOSED METHOD

A future of our method is that the source host executes the
network configuration before migrating. The problem, which
isTDW increases further by introducing IP mobility, is caused
by IP mobility process is executed after migrating. In fact,
the proposed method aims at reducing the process work of
IP mobility after migrating. The network configuration in-
cludes two configurations. One is the MoA configuration. In
MAT, the process for allocating a MoA follows four proce-
dures. First, a MAT daemon monitors MN’s interface state.
Next, a MAT kernel issues the Router Solicitation (RS) when

matifeth0
Domain U

Network0
dummy vif1.1vif1.0 pdummypeth0

Application Application matif
Domain U

Network1

Application ApplicationSource Host Destination Host

IPv6 Router(GW)CN

Global Live Migration

Internet
IMS

eth1 eth1

Network2

xenbr

Domain 0 Domain 0

dummy vif1.1vif1.0 pdummypeth0xenbr

MCS

eth0

Figure 1: Virtual link composition of the global live migra-
tion.

interface’s state changed by handoffing MN. Then, the dae-
mon allocates a new MoA after getting the Router Advertise-
ment (RA). Finally, it executes the IMS update for ensuring
consistency between a new MoA and the using HoA. When an
acknowledgment of the IMS update received, the MoA con-
figuration finishes. The other is the default gateway (GW)
configuration. This configuration is one of key points of our
method, and it enables RAs from the GW same as the des-
tination host to provide to a VM at the source host. In the
proposed method, IP mobility process after migrating is that
the destination host just switches to the interface with MoA.
As the result, our method can provide the global live migra-
tion thatTDW closes to 0.5 second.

3.1 System Architecture

In order to prepare network environment of the migrated
VM in advance, we add a special interface to a VM. Namely,
the VM has dual interfaces. Figure 1 shows the virtual link
composition between a VM and Hosts by the global live mi-
gration when our method is used. One is an ordinary inter-
face, which is linked to the MAT virtual interface (matif). We
call this interface the primary interface. In MAT, the matif is
switched to another physical interfaces when MN handoffed.
In fact, the matif enables an application on a VM to con-
stantly use the HoA. Also, the primary interface is attached
to a virtual bridge (xenbr) connected to the physical interface
(peth). Therefore, to provide reachability for a VM requests
to attach to the xenbr. This reachability means that a VM is
able to communicate with CN through the Internet. On the
other hand, the other interface is a special interface allocated
a MoA by the source host. We call the interface the secondary
interface. Normally, the secondary interface is attached to a
virtual bridge without reachability (dummy). The dummy is
only used for pretending the GW of the destination host. In
our method, it is necessary to prepare pair of two bridges for
a VM. As well, these interfaces are recognized as the virtual
interface (vif) in a host.

We have used Xen 3.2 and MAT 2.0 as a virtualization tech-

DomUeth1

Global Live Migration

GW0RA
Dom0eth0 dummy xenbr Destination hostDomUeth1Dom0 eth0dummyxenbrGW1matif

2.Allocatea MoA RSup RA
Lastmemorypage

downmatifmatif
4.Switch the primary interface

GW11.Set up the fake GW1

3.Swapattachment points
IMS update(2)

Source host

With reachability Without reachability Down state

IMS update(1)

Figure 2: Time chart of the proposed mechanism.

nology and an IP mobility architecture. In Xen, the host’s
OS controlling a VM is called the Domain 0 (Dom0), and the
VM’s OS is called the Domain U (DomU). Also, we have pre-
pared the Migration Control Server (MCS) for controlling the
global live migration. The MCS manages related information
needed for the network configuration. The information in-
cludes the host’s IP address, the VM’s domain name and the
GW information connected each host. The MCS is located on
the Internet, and it is recognized as the one server from hosts.
In addition, it is synchronized with IMS for providing VM’s
IP address information.

3.2 Detailed Mechanism

There are four steps in the proposed method. The first step
is the destination GW setting, the second step is the MoA al-
location, the third step is the attachment points swapping and
the fourth step is the primary interface switching. Figure 2
shows a time chart of the proposed mechanism. The first step
is executed at the source host, and the second step is executed
at a VM. The third step is executed at the destination host,
and the fourth step is executed at the migrated VM. Initially,
we suppose that the VM’s secondary interface is down at the
source host.

In the first step, the Dom0 of the source host executes the
GW configuration. Firstly, the Dom0 gets the GW informa-
tion of the destination host from the MCS. The information
includes the IPv6 address and the link local address of the

GW. Then, it sets their addresses to the dummy and it re-
quests two demands by presenting the link local address to the
DomU through the xenbr. One of two demands is the IP table
updating. The other is the secondary interface up. In addition,
the Dom0 keeps issuing RA to the suspending secondary in-
terface through the dummy. We use the radvd daemon for
issuing RA.

In the second step, the DomU executes the MoA config-
uration. Firstly, the DomU confirms the primary interface
managed by the DomU itself. Next, it updates a dummy’s
link local address to the IP table as the GW of the secondary
interface. Then, the DomU ups the secondary interface. In
MAT, the MAT daemon recognizes to handoff by changing
interface state. Thus, we introduced the process which ups
the secondary interface forcibly to a VM for getting the MoA
configuration. Finally, the DomU replays results that whether
the IP table was updated and whether a MoA was allocated
to the Dom0. At this point, the network configuration con-
cludes. On the other hand, the Dom0 executes live migration
if it does not receive the error message from the DomU.

In the third step, the Dom0 of the destination host ensures
reachability dynamically for an application on a VM. The
Dom0 swaps the attachment point of the virtual interface.
Namely, it attaches the secondary interface to the xenbr after
migrating. The primary interface is attached to the dummy.
We extended a part of the live migration program. A VM is
restored at the destination host after copying the last mem-
ory page. The restore process includes some procedures that
the creation of the virtual interface and the attachment to the
same bridge before migrating. We modified the latter part for
swapping the attachment point of the secondary interface.

In the fourth step, the Dom0 switches the secondary inter-
face dynamically to the primary interface. We extended the
front-end device driver on a VM. The driver is used in con-
trolling a virtual device by notifying the I/O operation to the
Dom0. The extended driver enables the primary interface to
down after migrating. By the result, the secondary interface
switches as the primary interface since the matif handoffs to
the secondary interface.

The first and the second steps do not seriously affectTDW .
But, these steps are possible to affectTALL. If these steps
are not executed in parallel with other programs at the back-
ground,TALL will surely not reduce. Therefore, we recom-
mend that the host ends these steps previously before execut-
ing the xm migrate command.

4 EVALUATION

We aim at reducingTDW increased by introducing IP mo-
bility. In order to evaluate the efficacy of our method quanti-
tatively, we have measuredTDW andTALL by three subjects.
The first subject is the global live migration with the proposed
method. The second subject is the global live migration with-
out the proposed method. The third subject is ordinary live
migration. Network environments are 100 Mbps and 1000
Mbps. We have prepared five VMs, which set different vir-
tual memory sizes: 32 MB, 64 MB, 128 MB, 256 MB and

Table 1: Specification of used machines.
Source / Destination host VM CN

CPU Core 2 Quad 2.6GHz virtual CPU 1 core Pentium III 1.0GHz
RAM 4096 MB 32, 64, 128, 256, 512 MB 512 MB
OS Debian Linux 5.0 Debian Linux 4.0 Debian Linux 4.0

kernel 2.6.26-2-xen-686 2.6.16.29 + MAT 2.0 2.6.16-5 + MAT 2.0
Hypervisor Xen 3.2-1 - -

Table 2: Experimental results.
Time (second)

RAM The global live migration (the VM with MAT) Live migration
size with the proposed method without the proposed method

(MB) 100 Mbps 1000 Mbps 100 Mbps 1000 Mbps 100 Mbps 1000 Mbps
TDW TALL TDW TALL TDW TALL TDW TALL TDW TALL TDW TALL

32 0.63 3.68 0.57 1.38 3.26 6.71 2.67 3.59 0.37 3.36 0.45 1.02
64 0.72 6.70 0.61 1.68 2.76 9.09 2.76 3.88 0.49 6.04 0.39 1.60
128 0.70 12.45 0.62 2.20 3.56 15.68 2.93 4.80 0.47 11.73 0.37 2.35
256 0.66 23.96 0.60 3.42 2.71 26.67 2.82 5.68 0.53 23.30 0.43 3.61
512 0.74 46.97 0.66 6.20 4.87 52.72 3.05 8.43 0.40 46.07 0.53 5.90

Global Live Migraion
Source Host Destination Host

100 or 1000 Mbps
ICMP6 echo request packets

VM with MAT

IMSCN
Internet

Network0 Network1

Network2

IPv6 Router

VM with MAT

Figure 3: Experiment methodology.

512 MB. The VM’s disk image is 2 GB, and each host has
not been sharing the storage. Table 1 shows a specification of
machines used at the experiment. We have used YAMAHA
RTX1200 as the IPv6 router.

4.1 Experiment Method

We have used the ping6 command and the simple script for
measuring each time. ICMP6 echo request packets, which
are sent from the VM to CN at 0.2 second interval, is used
to measureTDW . We defined the time from ICMP6 echo
request packets stopped to an ICMP6 echo request packet was
recaptured on the CN asTDW . The script, which is the ability
to measure runtime of millisecond scale, is used to measure
TALL. Figure 3 shows the experiment methodology.

0.00
10.00
20.00
30.00
40.00
50.00
60.00

0 100 200 300 400 500 600

Time (
second
)

Virtual memory size (MB)

Total time without the proposed methodTotal time with the proposed methodDowntime without the proposed methodDowntime with the proposed method

Figure 4: Experimental results in 100 Mbps environment.

4.2 Result and Consideration

Table 2 shows measured results of three subjects. Each
value is average of three times. Figure 4 is the graph based
onTDW andTALL compared the first subject with the second
subject in 100 Mbps environment.

The result of the first subject shows thatTDW is maintained
constant in time of 0.65 second on average, and maximum
TDW is 0.74 second. All results ofTDW in Table 2 shows
that TDW does not affect from a virtual memory size, and
variation of results includes an error of measurement.

In the second subject, the result shows thatTDW is be-
tween 2 seconds and 5 seconds.TDW of the first subject is
about 80% shorter than one in the second subject. Reduction
of TDW is noticed from Fig. 4.TALL, which increases in
proportion to virtual memory sizes, also reduces as well as

TDW . In addition, bothTDW andTALL closes to each result
of the third subject. Therefore, these results indicate that the
proposed method can provide the global live migration realiz-
ing TDW of less than 1 second, and our method has efficiency
enough.

The proposed method has possibility to coexist the post-
copy such as [11], [12] since it needs not to extend hypervisor.
If the combined method is realized,TALL of the global live
migration shorten. This is a great advantage to fast migration
of the global live migration. On the other hand, our method
requests dual bridges for a VM. This idea affects host’s re-
sources. As the result, the proposed method is possible to
worsen performance of the global live migration in some cir-
cumstances. We will verify host’s limitation when our method
is used.

5 CONCLUSIONS

In this paper, we proposed a solution of the global live mi-
gration’s problem, which the VM suspends certainly more
than a few seconds. The problem is caused by IP mobility
process is executed after VM migration. In our method, the
source host executes the network configuration before migrat-
ing. Namely, it sets a MoA previously to the secondary inter-
face of a VM. In addition, we have adopted MAT as an IP mo-
bility architecture that requires no IP tunnels. Therefore, our
method can reduceTDW of the global live migration without
inflicting a load on various network nodes. We have imple-
mented the prototype and we have evaluated efficacys of our
method quantitatively. By experiment result, we have con-
firmed thatTDW is less than 0.74 second when the proposed
method was used. The result closes toTDW of ordinary live
migration. Therefore, our method has efficiency enough.

In future work, we will apply the post-copy to our method,
and try to reduceTALL of the global live migration. In addi-
tion, we will evaluate two points. One is limitation of host’s
resources when the proposed method is used. In our method,
the source host uses two bridges for a VM. Thus, we need to
verify limitation of the number of VMs or bridges enabled to
create. The other is a measurement ofTDW when the applica-
tion on the VM provides a streaming service. We will verify
whether our method is effective to the streaming application.

ACKNOWLEDGEMENTS

This work was supported in part by Grant-in-Aid for Scien-
tific Research (KAKENHI 19300019, 20300029, 20700066)
of JSPS and the Strategic Information and Communications
R&D Promotion Program (SCOPE) of the Ministry of Inter-
nal Affairs and Communications (SCOPE-regional ICT 08230
8001) of Japan.

REFERENCES

[1] VMware, Virtualization: Architectural Considerations
and Other Evaluation Criteria,
http://www.vmware.com/pdf/
virtualization considerations.pdf

[2] P. Barham, B. Dragovie, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield, Xen
and the Art of Virtulalization, Proceedings of the ACM
Symposium on Operation Systems Principles (2003).

[3] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C.
Limpach, I. Pratt, and A. Warfield, live migration of vir-
tual machines, Proceedings of the 2nd ACM/USENIX
Symposium on Networked Systems Design and Imple-
mentation(NSDI), Boston, MA (2005).

[4] E. Harney, S. Goasguen, J. Martin, M. Murphy, and
M. Westall, The Efficacy of Live Virtual Machine Mi-
grations Over the Internet, Second International Work-
shop on Virtualization Technology in Distributed Com-
puting(VTDC), Reno, NV, USA (2007).

[5] D. Johnson, C. Perkins, and J. Arkko, Mobility Support
in IPv6, IETF RFC 3775 (2004).

[6] F. Travostino, P. Daspit, L. Gommans, C. Jog, C. de
Laat, J. Mambretti, I. Monga, B. van Oudenaarde, S.
Raaghunath, and P. Wang, Seamless live migration of
Virtual Machines over MAN/WAN, Future Generation ,
Computer System, pp. 901-907 (2006).

[7] L. Qin, H.Jinpeng, L. Jianxin, W. Tianyu, and W. Minx-
iong, HyperMIP: Hypervisor controlled Mobile IP for
Virtual Machine live migration across Network, IEEE
High Assurance Systems Engineering Symposium 2008
(HASE2008), pp. 80-88 (2008).

[8] C. Perkins, IP Mobility Support for IPv4, IETF RFC
3344 (2002).

[9] S. Gundavelli, K. Leung, V. Devarapalli, K. Chowd-
hury, and B. Patil, Proxy Mobile IPv6, IETF RFC 5213
(2008).

[10] R. Inayat, R. Aibara, K. Nishimura, T. Fujita, Y. No-
mura, and K. Maeda, MAT: An End-to-End Mobile
Communication Architecture with Seamless IP Hand-
off Support for the Next Generation Internet, Proceed-
ings of Second International Conference on Human So-
ciety@Internet, pp.465-475 (2003).

[11] T. Hirofuchi, H. Nakada, S. Itoh and S. Sekiguchi, Rapid
Virtual Machine Relocation Based on Delayed Memory
Transfer, IPSJ SIG Notes, system software and Operat-
ing System, Vol.2009-OS-112, pp. 1-8 (2009).

[12] M. R. Hines and K. Gopalan, Post-copy based live vir-
tual machine migration using adaptive pre-paging and
dynamic self-ballooning, Proceedings of the 5th Interna-
tional Conference on Virtual Execution Environments,
ACM Press, pp. 51-60 (2009).

