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ABSTRACT 

We explain what OpenFlow is and how it is used for 
network researches and experiments, as well as software 
platform for that. OpenFlow has been proposed as a means 
for researchers, network service creators, and others to 
easily design, test, and deploy their innovative ideas in 
experimental or production networks to accelerate research 
activities on wired or wireless network technologies. Rather 
than having programmability within each network node, the 
separated OpenFlow controller provides network control 
through pluggable software modules. In this paper, we 
introduce our OpenFlow programming framework Trema, 
which focuses on productivity of network experiments and 
covers an entire development cycle of programming, testing, 
debugging, and deployment. Then, we introduce some of 
our experiments including seamless handover between 
WiFi and WiMAX, multicast video streaming, and network 
access control. 
Keywords: OpenFlow, Software Defined Network, network 
virtualization, network controller 
 

1 INTRODUCTION 

The Internet has evolved to accommodate a variety of 
services including real-time communication, broadcasting, 
and content delivery as well as computer-to-computer 
communication. These services place very diverse demands 
on the networks. For example, real-time video delivery 
requires high bandwidth and a low packet loss rate whereas 
non-real time video delivery requires best effort 
performance but still high network bandwidth. Accordingly, 
a number of new technologies, including ones for quality of 
service (QoS), mobility, security, and traceability, need to 
be added to the traditional network paradigm. 

This has opened up new era of network researches and 
experiments and led to the creation of a number of 
initiatives focused on the “Future Internet.” The idea is to 
give researchers, network service creators, and others a way 
to easily develop, test, and deploy their innovative ideas in 
a large network infrastructure. These initiatives include the 
National Science Foundation’s Future Internet Design 
(FIND) [1] and the European Commission’s Seventh 
Framework Programme (FP7) [2]. 

Large-scale testbed facilities have also been funded to 
accelerate related research activities. They included the 
Global Environment for Network Innovations (GENI) [3] 
project sponsored by the National Science Foundation and 
the Japan Gigabit Network (JGN-X) [4] testbed sponsored 
by the National Institute of Information and 
Communications Technology. Network virtualization 
technologies, such as slice-based facility architecture [5] or 
FlowVisor [16], enable researchers to share the testbed 
simultaneously. Rather than aiming at a one-size-fits-all 
network, this technology aims at creating a diverse network 
structure that does not rely on a single unchanging 
technology. The result is an evolutionary cycle in which a 
variety of virtual networks are easily created, some of 
which soon disappear and some of which become widely 
used. This birth-and-death and natural selection process 
would promote the continuous evolution of network 
architectures. 

To accelerate such innovation process, technologies 
separating control and forwarding have been proposed [6-8]. 
They realize programmability in a separated controller 
rather than having programmability within each network 
node. This enables independent evolution of the control 
plane, which is used to implement a wide variety of control 
algorithms and has a relatively short evolutionary cycle, 
and the data plane, which supports faster packet delivery 
and has a relatively long evolutionary cycle. Among these 
technologies, OpenFlow has been accepted widely and used 
in large network testbeds like GENI and JGN-X. OpenFlow 
defines atomic behaviors for flow handing within each 
switching element and an interface for manipulating the 
behaviors from a separate controller. While this idea is not 
very new, its specific design has several advantages. For 
example, OpenFlow defines a flow as a set of arbitrary 
combinations of packet header fields, so it is applicable to 
flow-based fine-grained control as well as to aggregated 
control using a destination address or tunnel label. 

With these technologies, researchers can easily design, 
test, and deploy their innovative ideas in experimental or 
production networks. Programming at a (possibly 
centralized) controller improves such research productivity, 
however, a network systems is actually a distributed system 
consists of controllers, hosts, switches, and other network 
equipments, and thus, debugging and testing is not that easy. 
Researchers have to setup their test environment with hosts 
and switches that are controlled by their controller. 
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Debugging can be even more troublesome because users 
need to collect states of all related network components and 
analyze them. 

The contribution of this paper is twofold: 
1) We introduce our open source OpenFlow 

programming framework Trema [9-10], which 
focuses on productivity of network experiments to 
accelerate research activities on wired or wireless 
networks technologies. 

2) An independent repository called TremaApps [11], 
which distributes practical/experimental controllers. 
TremaApps would be a good starting point for easily 
developing real-world controllers. 

 Unlike other OpenFlow controller platform such as 
NOX/POX [12], Beacon, [13], Floodlight [14], and ONIX 
[15], uniqueness of Trema is that it heavily focuses on 
productivity of network researchers. To this end, Trema is 
not just an OpenFlow controller but an OpenFlow 
programming framework, which covers an entire 
development cycle of programming, testing, debugging, 
and deployment. 

Trema provides a platform part of an OpenFlow controller, 
a.k.a. network OS, and modularized programming 
framework on top of it. Trema is used by researchers, 
network operators, or service creators to develop their own 
OpenFlow controllers with multiple control modules. They 
can easily develop their own control modules using Ruby or 
C, or arrange the modules developed by other users. Trema 
provides equivalent programming APIs for both Ruby and 
C. This multiple language support is intended for smooth 
migration from rapid prototyping using Ruby to high-
performance implementation using C for deployment at 
production networks. 

Trema includes an integrated network emulator, which 
consists of pseudo hosts and virtual switches, so that users 
can easily test a new controller with this network emulator 
and then seamlessly deploy to production environment. For 
easier debugging in a distributed system called network, 
Trema provides an integrated debugging environment that 
collects state information from all parts of the system. 
Lastly, to enable seamless operation during entire 
development process, Trema provides integrated operation 
environment to configure and operate network emulator, 
debugger and controller through configuration file, 
command line interface, and interactive shell. 

 

2 OPENFLOW 

2.1 Basics 

The OpenFlow protocol supports the programming of 
various switch behaviors at the flow level. The “Open” 
means that the interface for externally controlling the 

switches is open, enabling anyone to participate in 
modifying the switch functions. The “Flow” means that the 
control is based on a flow, which can be arbitrarily defined. 
As shown in Fig. 1, user programs on the controller can 
perform various network control tasks, including routing, 
path management, and access control, and add flow entries 
to the flow tables in the switches. When a packet arrives at 
a switch, the switch searches for a flow entry matching the 
packet and performs the actions specified by the entry. 

 

 

OpenFlow Controller

Flow table

OpenFlow 
Switch

Rule Action Statistics

Rule Action Statistics

Flow table

OpenFlow 
Switch

Rule Action Statistics

Rule Action Statistics

Rule Action Statistics

User program
(Routing, path management, etc.)

 
Fig. 1: Illustration of OpenFlow architecture 

 

2.2 Flow and actions 

A “flow” can be flexibly defined using arbitrary parts of a 
packet header, whereas classical switches and routers use 
only specific parts of the header. The header parts used for 
flow matching include 

- Ingress port (either physical or logical port) 
- MAC source/destination address 
- Ethernet type 
- VLAN id and priority 
- IP source/destination address 
- IP protocol 
- Type of service 
- Transport layer source and destination port. 
When a packet matches a flow entry, one or more actions 

are applied, including 
- sending the packet to one or more physical ports 
- redirecting the packet to the controller 
- placing the packet in a specific switch queue, 

which may have QoS control 
- dropping the packet 
- modifying specific fields in the header. 
Therefore, the behaviors of OpenFlow switches are not 

limited by the classical layered architecture; for instance, 
various types of flow entries can be mixed in a switch. For 
example, the following flow entry emulates the broadcast 
operation of an Ethernet switch. 

 Rule: MAC DA = broadcast 
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 Action: OUTPUT = flood 
Also, the following entry may be used for IP forwarding. 
 Rule: MAC DA = MAC address of a router 
  Ethernet type = IPv4 
  IP DA = destination host 
 Action: MAC DA = next hop MAC address 
  OUTPUT = physical port to next hop 
The following entry redirects packets having an HTTP 

port number to a specific path. 
 Rule: Dest. TCP port = HTTP 
 Action: OUTPUT = physical port X 
 

2.3 Design variations 

The OpenFlow specifications are flexible enough to 
support many design variations of the behavior model. 

- Reactive vs. proactive 
An OpenFlow controller can be reactive by dynamically 

injecting flow entries when a new flow arrives at the switch. 
Or, it can be proactive by statically injecting flow entries in 
advance into the arriving packets. 

- Fine grain vs. aggregated 
A flow entry can be fine grain, i.e., per TCP/IP session, or 

aggregated, i.e., per IP destination or tunnel. If the 
controller runs an IP routing protocol, for example, it 
creates aggregated flow entries for IP destinations and 
injects them into the switches proactively. 

- Centralized vs. distributed 
An OpenFlow controller can be centralized by having a 

control server control all the switches. Or multiple 
controllers can be deployed to cooperatively control the 
network for scalability and redundancy. 

 

2.4 OpenFlow for network experiments 

Experiments in network research are generally done by 
using experimental facilities isolated from production 
environment; however, experiments in production networks 
have several advantages, such as using real traffic load for 
experiments, large and wide area test environment setup, 
seamless migration from experiments to production 
operation. OpenFlow with network virtualization enables 
these kinds of experiments in a shared production network. 

For example, as shown in Fig. 2, a class in a university 
would teach how to program in a network, and then 
exercise an implementation in a real campus network. 
Laboratory experiments also share the campus network 
facility for larger and lively testing. Students and 
researchers can use their own controller for their office 
traffic like web browsing or e-mail. 

 

OpenFlow
switches

Controller
Researchers

Classes

Campus network infrastructure  
Fig. 2: OpenFlow in campus networks 

 

3 OPENFLOW PROGRAMMING 
FRAMEWORK TREMA 

3.1 Trema overview 

Trema is an OpenFlow programming framework, which 
covers entire development cycle of development processes 
to improve productivity of research activities on wired or 
wireless networks technologies. 

Figure 3 shows a typical development process associated 
with Trema structure. A user design and develop a 
controller at a first place, then sets up a test environment 
and configures the controller to test the controller. If the 
controller gets any problems, appropriate debugging needs 
to be done. Then the controller will be switched from the 
test environment to production environment for its real 
operation. During the operation, ruining states has to be 
properly monitored to check the healthiness or possible 
bugs in the controller. 

Trema is designed to cover all these development 
processes. Therefore, as shown in Fig. 4, Trema framework 
is composed of these blocks including OpenFlow controller, 
network emulator, operation environment, and debugging 
support, which are described in the following.  
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(b) Trema structure(a) Typical development process  
Fig. 3: Typical development process and Trema 

structure 

ICMU 2012 Copyright © 2012 by Information Processing Society of Japan. 
All rights reserved. 166



 
 

Trema DSL interpreter

Configuration and operation

OpenFlow,
etc…Network emulator

or
Physical network

Logger / TremaShark

Logging / capture /  snapshot

OpenFlow controller

U
se

r 
m

o
d

u
le

(C
)

U
se

r 
m

o
d

u
le

(R
u

b
y)

U
se

r 
m

o
d

u
le

(R
u

b
y)

C
o

re
 m

o
d

u
le

(C
)

C
o

re
 m

o
d

u
le

(C
)

Platform (a.k.a. network OS)

Operation environment

ShellConfiguration CLI

Debugging support
 

Fig. 4: Trema high-level architecture 
 

3.2 Programming with Trema 

Trema provides a platform part of an OpenFlow controller 
(this part is sometimes referred to as “network OS”), and 
modularized programming framework on top of it. Users 
develop their own OpenFlow controllers by collecting some 
core modules, such as OpenFlow switch manager, included 
in the Trema framework and user modules developed by 
themselves. 

User modules can be written in Ruby or C. Trema 
provides equivalent programming APIs for both Ruby and 
C. This multiple language support is intended for smooth 
migration from rapid prototyping using Ruby to high-
performance implementation using C for deployment at 
production networks. 

Figure 5 shows an example of a Ruby program for a 
repeater hub controller. When the controller receives a 
packet_in message from a switch, it sends flow_mod 
message back to the switch to instruct it to flood subsequent 
packets in the same flow, then it sends packet_out message 
to flood the first packet of the flow. The code reads quire 
smoothly almost like a pseudo code but it is actually an 
executable Trema program. Trema Ruby APIs are carefully 
designed to eliminate commonly used repetitive 
expressions and write the code concise; for example: 

- Coding by convention: when the controller receives a 
packet_in message, a handler function named 
packet_in is automatically called. There’s no need to 
write a code to parse and dispatch the messages. 

- Default options: OpenFlow messages like flow_mod 
or packet_out have many parameters to be specified. 
Trema API requires specifying only the parameters 
that is different from the default values. 

- Syntactic sugar: match structure, which defines a 
flow with arbitral combination of packet header fields, 
can easily be extracted from packet_in messages 
using ExactMatch.from expression. 

 
class RepeaterHub < Controller # Create a new controller class

def packet_in datapath_id, message # Packet-in received handler
send_flow_mod_add(
datapath_id,
:match => ExactMatch.from( message ),
:actions => ActionOutput.new( OFPP_FLOOD )

)
send_packet_out(
datapath_id,
:packet_in => message,
:actions => ActionOutput.new( OFPP_FLOOD )

)
end

end

Send flow_mod

Send packet_out

 
Fig. 5: Repeater-hub program in Ruby 

 

3.3 Network abstraction and high-level APIs 

Trema provides basic APIs for OpenFlow protocol 
handling, but users may want some high-level APIs for 
easier development. For example, users may want an API 
obtaining network topology, rather than directly handling 
OpenFlow messages to obtain it. Abstracting network 
components and high-level APIs for them should be 
extensible and thus they should not be tightly bound to the 
platform. The modularized programming framework of 
Trema enables to develop network abstractions as a module 
structure. As shown in Fig.6, use modules call high-level 
APIs provided by the abstraction modules such as Topology 
management or Path management.  These modules can be 
interpreted as an abstraction layer and user application layer, 
but they are actually implemented in a flat structure for 
extensibility. Abstraction layers can be hierarchical, for 
instance, Link discovery module is used by Topology 
management module, which is used by Routing module. 

 
OpenFlow controller

Packet
forwarding

Packet
forwarding

Packet
forwarding

Packet
forwarding

Routing Security Monitoring

Trema platform (library and core modules)

Topology mgmt.

Link discovery

Path mgmt.

Flow mgmt.

High-level APIs

 
Fig. 6: Network abstraction and high-level APIs 
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3.4 Network emulator 

Trema provides an integrated network emulator, which 
consists of pseudo hosts and virtual switches, so that users 
can easily test their controller. After the test, the controller 
is seamlessly deployed to production environments without 
modifying any configurations. The controller is always 
waiting for any switches to connect whether they are virtual 
ones or physical ones, so deploying the controller is just 
plugging a network cable to the controller. 

The emulator also allows connecting virtual and physical 
switches, thus physical switches can be integrated in a test 
environment. In the same way, virtual switches can also be 
used in a part of production networks. 

The advantage of this integrated emulator over other 
independent network emulators like Mininet [17] is the 
productivity of the development cycle. During the testing 
phase, its configuration and operation are integrated with 
Trema’s operation environment to run the test as quick as 
possible. In a debugging phase, monitoring of running 
states of the network emulator and the controller are 
integrated for easier debugging. 

 

3.5 Debugging support 

For easier debugging in a distributed system called 
network, Trema provides an integrated debugging support 
to collects state information from all parts of the system. In 
addition to standard logging system, TremaShark [18] 
enables system wide state monitoring. 

As shown in Fig.7, TremaShark monitors any messages 
and events from any components of the target system. Any 
messaging (or API call) among control modules in a 
controller, syslog messages from switches and hosts, packet 
captures from network interfaces or tap devices, and any 
text messages are collected and serialized. They are held in 
a circular buffer for real-time monitoring, or stored in a 
pcap file for off-line analysis. They are parsed and 
displayed in a single timeline at a Wireshark [19] terminal 
with Trema plug-in. 
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Fig. 7: TremaShark 

3.6 Operation environment 

To enable seamless operation of all through the 
development process, Trema provides an integrated 
operation environment to configure and operate network 
emulator, debugger, as well as controller modules as shown 
in Fig. 6. These components are managed through 
configuration file, command line interface, or interactive 
shell. The details can be found at Trema tutorials [20, 21]. 

 

3.7 TremaApps 

An independent repository called TremaApps [11] 
distributes practical/experimental controllers, which would 
be a good starting point for developing real-world 
controllers. For example, Routing Switch controller, which 
abstracts a mush of OpenFlow switches into a single virtual 
layer 2 switch and provides end-to-end shortest path packet 
delivery, is found in the repository. Sliceable Routing 
Switch emulates multiple virtual layer 2 network slices. 

TremaApps also provides independent control modules, 
such as Topology and Flow Manager. As discussed in 
Section 4.3, users would include these modules and develop 
their own control modules that use these high-level APIs. 

 

4 RESEARCH ACTIVITY EXAMPLES 

4.1 WiFi-WiMAX handover 

One of the applications of OpenFlow to wireless research 
area that we have studied earlier is a seamless handover 
between WiFi and WiMAX. In this scenario, to maximize 
total wireless capacity utilization, a centralized controller 
instructs which mobile station should use which access 
channel based on global utilization information, rather than 
a mobile station individually selects a channel with its local 
information. OpenFlow is used to integrate controls of both 
routing in wired network and selection of wireless channels. 
When the controller indicates to switch to a different 
wireless channel, routing path in the OpenFlow network is 
also changed to reach a new access point or base station. 

Figure 8 shows our implementation of the system 
architecture. WiFi APs and WiMAX BSes have OpenFlow 
switch module, which are controlled by a centralized 
controller, to switch packets among multiple wired and 
wireless interfaces, and mobility module to inform the 
controller about wireless link information. In the controller, 
mobile agent modules manages location of mobile stations 
and makes handover decision based on various information 
such as wireless link status, population at each AP/BS, 
signaling from mobile station, to maximize wireless 
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capacity utilization. OpenFlow module establishes end-to-
end path in the wired network part. 

Our demonstration system is illustrated in Fig. 9, where a 
streaming server is sending a video stream to a mobile 
station via WiFi or WiMAX network. The controller 
monitors wireless resource utilizations and if WiFi network 
is crowded, for example, it indicates to switch to WiMAX 
network and changes the path in the OpenFlow switch 
network. We have observed almost no packet losses, and 
thus degradation of video quality, during the handover. 
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Modules

Open Flow 
control channel

WiFi AP WiFi AP
WiMAX

BS

Open Flow 
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Fig. 8: WiFi-WiMAX seamless handover system 
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Fig. 9: Demonstration system 

 

4.2 Multicast streaming 

Looking at video streaming in wired network part, 
OpenFlow network is also useful to deliver IP multicast 
streaming. In a traditional IP network environment, it takes 
time to reconstruct multicast tress when a switch failure or 
a link failure occurs because multicast trees cannot be 
reconstructed until unicast path is stabilized, therefore 
significant packet losses and hence video quality 
degradation cannot be avoided. One approach for this 
problem is to use redundant trees, but algorithms to 
compute redundant tree require centralized computation. 
We have been using OpenFlow to realize redundant 

multicast trees under IP multicast protocols [22]. We have 
presented a design of an OpenFlow controller supporting IP 
multicast protocols, e.g. snoops IGMP messages to manage 
multicast recipient groups, and a method to set up multiple 
multicast trees for fast tree switching. 

To evaluate the proposed method, we setup a test 
environment consists of NEC IP8800 OpenFlow enabled 
Ethernet switches and Linux servers for a sender and 
receivers.  As shown in Fig. 10, we have tested with three 
different topologies having 5, 7, and 9 switches. We sent 
30Mbps DV stream from the sender. Figure 11 shows the 
switching time to the backup tree and the number of lost 
packet when we intentionally disabled one of the links. The 
results indicate that multicast packet delivery using 
OpenFlow is quite robust to network failures and the 
degradation of video quality is quite limited. 

Although our implemented code is not open to public, 
Simple Multicast found in TremaApps could be some help 
to researchers who develop multicast controllers. 
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Fig. 10: Network topology 
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Fig. 11: Evaluation results 

 

4.3 Network access control 

Access control to a network, specific hosts, or services, is 
an important feature of a network. Wireless access points 
have such functionality to let users access to the network. 
Firewalls and routers also generally have access control list 
capability to block specified flows of packets. However, 
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they only check packets that exactly go though the devices, 
thus if terminals move around the network or switch 
to/from wireless and wired accesses, access control may not 
be applied. In mobile environments, access control must be 
applied for any packets from any locations to any locations. 

OpenFlow can provide “default-deny” type of 
communications, namely a controller dynamically sets up a 
path for an authorized flow and other flows are blocked by 
default. As shown in Fig.12, when a packet of a new flow 
arrives at any switches in the network, it is sent to the 
controller. Filtering rule is looked-up with any 
combinations of packet header fields according to 
associated priority. If a matched rule is found, its associated 
action is applied to the flow. 

We have evaluated this system using Trema to see the 
effects of forcing this any-to-any access control. Figure 13 
shows RTTs between host A and B with this access control. 
When we only set exact match rules, which exactly 
specifies a flow with all applicable packet header fields, no 
performance degradation is observed regardless of the 
number of rules because hash search performance is not 
affected by the number. If we use wildcard matching, which 
one or more part of the header fields are wildcarded, 
performance degradation is still negligible when the 
number of rules is less than 10-100K. 
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Fig. 12: Access control in OpenFlow network 
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Fig. 13: Observed RTT between hosts 

 

5 CONCLUSION 

In this paper, we introduced OpenFlow and its 
application for network researches and experiments on 
wired or wireless network technologies. OpenFlow is quite 
useful for researchers to easily deploy their innovative ideas 
in experimental or production networks. Programming at a 
controller improves research productivity and network 
virtualization technologies help researchers share a large 
testbed and production facilities. We also introduced our 
OpenFlow programming framework Trema, which focuses 
on productivity of network researches and experiments.  
Trema is designed to cover an entire development cycle of 
programming, testing, debugging, and deployment. We also 
touched network abstraction and high-level APIs, as well as 
TremaApps. 

Then, we introduced some of our experiments including 
seamless handover between WiFi and WiMAX, multicast 
video streaming, and network access control. In these cases, 
we have shown a centralized wireless and wired resource 
control for efficient wireless link capacity, robust 
multicasting, as well as network access control for highly 
mobile terminals, which has shown that OpenFlow is quite 
useful for wireless and wired network researches. 
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