
Programmable Network Using OpenFlow for Network Researches and Experiments

HIDEyuki Shimonishi*, Yasuhito Takamiya*, Yasunobu Chiba*, Kazushi Sugyo*, Youichi Hatano*,
Kentaro Sonoda*, Kazuya Suzuki*, Daisuke Kotani**, and Ippei Akiyoshi*

*Cloud Systems Research laboratory, NEC Corp.

1753 Shimonumabe, Nakahara, Kawasaki, Kanagawa 211-8666, Japan, h-shimonishi@cd.jp.nec.com
**Graduate School of Informatics, Kyoto University.
Yoshida-Honmachi, Sakyo, Kyoto 606-8501 Japan

ABSTRACT

We explain what OpenFlow is and how it is used for
network researches and experiments, as well as software
platform for that. OpenFlow has been proposed as a means
for researchers, network service creators, and others to
easily design, test, and deploy their innovative ideas in
experimental or production networks to accelerate research
activities on wired or wireless network technologies. Rather
than having programmability within each network node, the
separated OpenFlow controller provides network control
through pluggable software modules. In this paper, we
introduce our OpenFlow programming framework Trema,
which focuses on productivity of network experiments and
covers an entire development cycle of programming, testing,
debugging, and deployment. Then, we introduce some of
our experiments including seamless handover between
WiFi and WiMAX, multicast video streaming, and network
access control.
Keywords: OpenFlow, Software Defined Network, network
virtualization, network controller

1 INTRODUCTION

The Internet has evolved to accommodate a variety of
services including real-time communication, broadcasting,
and content delivery as well as computer-to-computer
communication. These services place very diverse demands
on the networks. For example, real-time video delivery
requires high bandwidth and a low packet loss rate whereas
non-real time video delivery requires best effort
performance but still high network bandwidth. Accordingly,
a number of new technologies, including ones for quality of
service (QoS), mobility, security, and traceability, need to
be added to the traditional network paradigm.

This has opened up new era of network researches and
experiments and led to the creation of a number of
initiatives focused on the “Future Internet.” The idea is to
give researchers, network service creators, and others a way
to easily develop, test, and deploy their innovative ideas in
a large network infrastructure. These initiatives include the
National Science Foundation’s Future Internet Design
(FIND) [1] and the European Commission’s Seventh
Framework Programme (FP7) [2].

Large-scale testbed facilities have also been funded to
accelerate related research activities. They included the
Global Environment for Network Innovations (GENI) [3]
project sponsored by the National Science Foundation and
the Japan Gigabit Network (JGN-X) [4] testbed sponsored
by the National Institute of Information and
Communications Technology. Network virtualization
technologies, such as slice-based facility architecture [5] or
FlowVisor [16], enable researchers to share the testbed
simultaneously. Rather than aiming at a one-size-fits-all
network, this technology aims at creating a diverse network
structure that does not rely on a single unchanging
technology. The result is an evolutionary cycle in which a
variety of virtual networks are easily created, some of
which soon disappear and some of which become widely
used. This birth-and-death and natural selection process
would promote the continuous evolution of network
architectures.

To accelerate such innovation process, technologies
separating control and forwarding have been proposed [6-8].
They realize programmability in a separated controller
rather than having programmability within each network
node. This enables independent evolution of the control
plane, which is used to implement a wide variety of control
algorithms and has a relatively short evolutionary cycle,
and the data plane, which supports faster packet delivery
and has a relatively long evolutionary cycle. Among these
technologies, OpenFlow has been accepted widely and used
in large network testbeds like GENI and JGN-X. OpenFlow
defines atomic behaviors for flow handing within each
switching element and an interface for manipulating the
behaviors from a separate controller. While this idea is not
very new, its specific design has several advantages. For
example, OpenFlow defines a flow as a set of arbitrary
combinations of packet header fields, so it is applicable to
flow-based fine-grained control as well as to aggregated
control using a destination address or tunnel label.

With these technologies, researchers can easily design,
test, and deploy their innovative ideas in experimental or
production networks. Programming at a (possibly
centralized) controller improves such research productivity,
however, a network systems is actually a distributed system
consists of controllers, hosts, switches, and other network
equipments, and thus, debugging and testing is not that easy.
Researchers have to setup their test environment with hosts
and switches that are controlled by their controller.

ICMU 2012 Copyright © 2012 by Information Processing Society of Japan.
All rights reserved. 164

Debugging can be even more troublesome because users
need to collect states of all related network components and
analyze them.

The contribution of this paper is twofold:
1) We introduce our open source OpenFlow

programming framework Trema [9-10], which
focuses on productivity of network experiments to
accelerate research activities on wired or wireless
networks technologies.

2) An independent repository called TremaApps [11],
which distributes practical/experimental controllers.
TremaApps would be a good starting point for easily
developing real-world controllers.

 Unlike other OpenFlow controller platform such as
NOX/POX [12], Beacon, [13], Floodlight [14], and ONIX
[15], uniqueness of Trema is that it heavily focuses on
productivity of network researchers. To this end, Trema is
not just an OpenFlow controller but an OpenFlow
programming framework, which covers an entire
development cycle of programming, testing, debugging,
and deployment.

Trema provides a platform part of an OpenFlow controller,
a.k.a. network OS, and modularized programming
framework on top of it. Trema is used by researchers,
network operators, or service creators to develop their own
OpenFlow controllers with multiple control modules. They
can easily develop their own control modules using Ruby or
C, or arrange the modules developed by other users. Trema
provides equivalent programming APIs for both Ruby and
C. This multiple language support is intended for smooth
migration from rapid prototyping using Ruby to high-
performance implementation using C for deployment at
production networks.

Trema includes an integrated network emulator, which
consists of pseudo hosts and virtual switches, so that users
can easily test a new controller with this network emulator
and then seamlessly deploy to production environment. For
easier debugging in a distributed system called network,
Trema provides an integrated debugging environment that
collects state information from all parts of the system.
Lastly, to enable seamless operation during entire
development process, Trema provides integrated operation
environment to configure and operate network emulator,
debugger and controller through configuration file,
command line interface, and interactive shell.

2 OPENFLOW

2.1 Basics

The OpenFlow protocol supports the programming of
various switch behaviors at the flow level. The “Open”
means that the interface for externally controlling the

switches is open, enabling anyone to participate in
modifying the switch functions. The “Flow” means that the
control is based on a flow, which can be arbitrarily defined.
As shown in Fig. 1, user programs on the controller can
perform various network control tasks, including routing,
path management, and access control, and add flow entries
to the flow tables in the switches. When a packet arrives at
a switch, the switch searches for a flow entry matching the
packet and performs the actions specified by the entry.

OpenFlow Controller

Flow table

OpenFlow
Switch

Rule Action Statistics

Rule Action Statistics

Flow table

OpenFlow
Switch

Rule Action Statistics

Rule Action Statistics

Rule Action Statistics

User program
(Routing, path management, etc.)

Fig. 1: Illustration of OpenFlow architecture

2.2 Flow and actions

A “flow” can be flexibly defined using arbitrary parts of a
packet header, whereas classical switches and routers use
only specific parts of the header. The header parts used for
flow matching include

- Ingress port (either physical or logical port)
- MAC source/destination address
- Ethernet type
- VLAN id and priority
- IP source/destination address
- IP protocol
- Type of service
- Transport layer source and destination port.
When a packet matches a flow entry, one or more actions

are applied, including
- sending the packet to one or more physical ports
- redirecting the packet to the controller
- placing the packet in a specific switch queue,

which may have QoS control
- dropping the packet
- modifying specific fields in the header.
Therefore, the behaviors of OpenFlow switches are not

limited by the classical layered architecture; for instance,
various types of flow entries can be mixed in a switch. For
example, the following flow entry emulates the broadcast
operation of an Ethernet switch.

 Rule: MAC DA = broadcast

ICMU 2012 Copyright © 2012 by Information Processing Society of Japan.
All rights reserved. 165

 Action: OUTPUT = flood
Also, the following entry may be used for IP forwarding.
 Rule: MAC DA = MAC address of a router
 Ethernet type = IPv4
 IP DA = destination host
 Action: MAC DA = next hop MAC address
 OUTPUT = physical port to next hop
The following entry redirects packets having an HTTP

port number to a specific path.
 Rule: Dest. TCP port = HTTP
 Action: OUTPUT = physical port X

2.3 Design variations

The OpenFlow specifications are flexible enough to
support many design variations of the behavior model.

- Reactive vs. proactive
An OpenFlow controller can be reactive by dynamically

injecting flow entries when a new flow arrives at the switch.
Or, it can be proactive by statically injecting flow entries in
advance into the arriving packets.

- Fine grain vs. aggregated
A flow entry can be fine grain, i.e., per TCP/IP session, or

aggregated, i.e., per IP destination or tunnel. If the
controller runs an IP routing protocol, for example, it
creates aggregated flow entries for IP destinations and
injects them into the switches proactively.

- Centralized vs. distributed
An OpenFlow controller can be centralized by having a

control server control all the switches. Or multiple
controllers can be deployed to cooperatively control the
network for scalability and redundancy.

2.4 OpenFlow for network experiments

Experiments in network research are generally done by
using experimental facilities isolated from production
environment; however, experiments in production networks
have several advantages, such as using real traffic load for
experiments, large and wide area test environment setup,
seamless migration from experiments to production
operation. OpenFlow with network virtualization enables
these kinds of experiments in a shared production network.

For example, as shown in Fig. 2, a class in a university
would teach how to program in a network, and then
exercise an implementation in a real campus network.
Laboratory experiments also share the campus network
facility for larger and lively testing. Students and
researchers can use their own controller for their office
traffic like web browsing or e-mail.

OpenFlow
switches

Controller
Researchers

Classes

Campus network infrastructure
Fig. 2: OpenFlow in campus networks

3 OPENFLOW PROGRAMMING
FRAMEWORK TREMA

3.1 Trema overview

Trema is an OpenFlow programming framework, which
covers entire development cycle of development processes
to improve productivity of research activities on wired or
wireless networks technologies.

Figure 3 shows a typical development process associated
with Trema structure. A user design and develop a
controller at a first place, then sets up a test environment
and configures the controller to test the controller. If the
controller gets any problems, appropriate debugging needs
to be done. Then the controller will be switched from the
test environment to production environment for its real
operation. During the operation, ruining states has to be
properly monitored to check the healthiness or possible
bugs in the controller.

Trema is designed to cover all these development
processes. Therefore, as shown in Fig. 4, Trema framework
is composed of these blocks including OpenFlow controller,
network emulator, operation environment, and debugging
support, which are described in the following.

Design a controller

Setup test environment

Run tests

Debugging at test
environment

Deploy to production
environment

Network emulator

Ruby/C liblaries

Controller

Debug tools

O
pe

ra
tio

n
en

vi
ro

nm
en

t

(b) Trema structure(a) Typical development process
Fig. 3: Typical development process and Trema

structure

ICMU 2012 Copyright © 2012 by Information Processing Society of Japan.
All rights reserved. 166

Trema DSL interpreter

Configuration and operation

OpenFlow,
etc…Network emulator

or
Physical network

Logger / TremaShark

Logging / capture / snapshot

OpenFlow controller

U
se

r
m

o
d

u
le

(C
)

U
se

r
m

o
d

u
le

(R
u

b
y)

U
se

r
m

o
d

u
le

(R
u

b
y)

C
o

re
 m

o
d

u
le

(C
)

C
o

re
 m

o
d

u
le

(C
)

Platform (a.k.a. network OS)

Operation environment

ShellConfiguration CLI

Debugging support

Fig. 4: Trema high-level architecture

3.2 Programming with Trema

Trema provides a platform part of an OpenFlow controller
(this part is sometimes referred to as “network OS”), and
modularized programming framework on top of it. Users
develop their own OpenFlow controllers by collecting some
core modules, such as OpenFlow switch manager, included
in the Trema framework and user modules developed by
themselves.

User modules can be written in Ruby or C. Trema
provides equivalent programming APIs for both Ruby and
C. This multiple language support is intended for smooth
migration from rapid prototyping using Ruby to high-
performance implementation using C for deployment at
production networks.

Figure 5 shows an example of a Ruby program for a
repeater hub controller. When the controller receives a
packet_in message from a switch, it sends flow_mod
message back to the switch to instruct it to flood subsequent
packets in the same flow, then it sends packet_out message
to flood the first packet of the flow. The code reads quire
smoothly almost like a pseudo code but it is actually an
executable Trema program. Trema Ruby APIs are carefully
designed to eliminate commonly used repetitive
expressions and write the code concise; for example:

- Coding by convention: when the controller receives a
packet_in message, a handler function named
packet_in is automatically called. There’s no need to
write a code to parse and dispatch the messages.

- Default options: OpenFlow messages like flow_mod
or packet_out have many parameters to be specified.
Trema API requires specifying only the parameters
that is different from the default values.

- Syntactic sugar: match structure, which defines a
flow with arbitral combination of packet header fields,
can easily be extracted from packet_in messages
using ExactMatch.from expression.

class RepeaterHub < Controller # Create a new controller class

def packet_in datapath_id, message # Packet-in received handler
send_flow_mod_add(
datapath_id,
:match => ExactMatch.from(message),
:actions => ActionOutput.new(OFPP_FLOOD)

)
send_packet_out(
datapath_id,
:packet_in => message,
:actions => ActionOutput.new(OFPP_FLOOD)

)
end

end

Send flow_mod

Send packet_out

Fig. 5: Repeater-hub program in Ruby

3.3 Network abstraction and high-level APIs

Trema provides basic APIs for OpenFlow protocol
handling, but users may want some high-level APIs for
easier development. For example, users may want an API
obtaining network topology, rather than directly handling
OpenFlow messages to obtain it. Abstracting network
components and high-level APIs for them should be
extensible and thus they should not be tightly bound to the
platform. The modularized programming framework of
Trema enables to develop network abstractions as a module
structure. As shown in Fig.6, use modules call high-level
APIs provided by the abstraction modules such as Topology
management or Path management. These modules can be
interpreted as an abstraction layer and user application layer,
but they are actually implemented in a flat structure for
extensibility. Abstraction layers can be hierarchical, for
instance, Link discovery module is used by Topology
management module, which is used by Routing module.

OpenFlow controller

Packet
forwarding

Packet
forwarding

Packet
forwarding

Packet
forwarding

Routing Security Monitoring

Trema platform (library and core modules)

Topology mgmt.

Link discovery

Path mgmt.

Flow mgmt.

High-level APIs

Fig. 6: Network abstraction and high-level APIs

ICMU 2012 Copyright © 2012 by Information Processing Society of Japan.
All rights reserved. 167

3.4 Network emulator

Trema provides an integrated network emulator, which
consists of pseudo hosts and virtual switches, so that users
can easily test their controller. After the test, the controller
is seamlessly deployed to production environments without
modifying any configurations. The controller is always
waiting for any switches to connect whether they are virtual
ones or physical ones, so deploying the controller is just
plugging a network cable to the controller.

The emulator also allows connecting virtual and physical
switches, thus physical switches can be integrated in a test
environment. In the same way, virtual switches can also be
used in a part of production networks.

The advantage of this integrated emulator over other
independent network emulators like Mininet [17] is the
productivity of the development cycle. During the testing
phase, its configuration and operation are integrated with
Trema’s operation environment to run the test as quick as
possible. In a debugging phase, monitoring of running
states of the network emulator and the controller are
integrated for easier debugging.

3.5 Debugging support

For easier debugging in a distributed system called
network, Trema provides an integrated debugging support
to collects state information from all parts of the system. In
addition to standard logging system, TremaShark [18]
enables system wide state monitoring.

As shown in Fig.7, TremaShark monitors any messages
and events from any components of the target system. Any
messaging (or API call) among control modules in a
controller, syslog messages from switches and hosts, packet
captures from network interfaces or tap devices, and any
text messages are collected and serialized. They are held in
a circular buffer for real-time monitoring, or stored in a
pcap file for off-line analysis. They are parsed and
displayed in a single timeline at a Wireshark [19] terminal
with Trema plug-in.

Event
Collector

Circular
buffer

Network
Interface / Tap

Switch

Trema-based
OpenFlow Controller

Host

Serialized
notifications

Developer / Operator

Real-time /
off-line
monitoring

Syslog
Relay

Packet
Capture

Stdin
Relay

Syslog

State / Event Viewer

Pcap
File

Wireshark w/ plugin

Any Text String

Tre
ma

Fig. 7: TremaShark

3.6 Operation environment

To enable seamless operation of all through the
development process, Trema provides an integrated
operation environment to configure and operate network
emulator, debugger, as well as controller modules as shown
in Fig. 6. These components are managed through
configuration file, command line interface, or interactive
shell. The details can be found at Trema tutorials [20, 21].

3.7 TremaApps

An independent repository called TremaApps [11]
distributes practical/experimental controllers, which would
be a good starting point for developing real-world
controllers. For example, Routing Switch controller, which
abstracts a mush of OpenFlow switches into a single virtual
layer 2 switch and provides end-to-end shortest path packet
delivery, is found in the repository. Sliceable Routing
Switch emulates multiple virtual layer 2 network slices.

TremaApps also provides independent control modules,
such as Topology and Flow Manager. As discussed in
Section 4.3, users would include these modules and develop
their own control modules that use these high-level APIs.

4 RESEARCH ACTIVITY EXAMPLES

4.1 WiFi-WiMAX handover

One of the applications of OpenFlow to wireless research
area that we have studied earlier is a seamless handover
between WiFi and WiMAX. In this scenario, to maximize
total wireless capacity utilization, a centralized controller
instructs which mobile station should use which access
channel based on global utilization information, rather than
a mobile station individually selects a channel with its local
information. OpenFlow is used to integrate controls of both
routing in wired network and selection of wireless channels.
When the controller indicates to switch to a different
wireless channel, routing path in the OpenFlow network is
also changed to reach a new access point or base station.

Figure 8 shows our implementation of the system
architecture. WiFi APs and WiMAX BSes have OpenFlow
switch module, which are controlled by a centralized
controller, to switch packets among multiple wired and
wireless interfaces, and mobility module to inform the
controller about wireless link information. In the controller,
mobile agent modules manages location of mobile stations
and makes handover decision based on various information
such as wireless link status, population at each AP/BS,
signaling from mobile station, to maximize wireless

ICMU 2012 Copyright © 2012 by Information Processing Society of Japan.
All rights reserved. 168

capacity utilization. OpenFlow module establishes end-to-
end path in the wired network part.

Our demonstration system is illustrated in Fig. 9, where a
streaming server is sending a video stream to a mobile
station via WiFi or WiMAX network. The controller
monitors wireless resource utilizations and if WiFi network
is crowded, for example, it indicates to switch to WiMAX
network and changes the path in the OpenFlow switch
network. We have observed almost no packet losses, and
thus degradation of video quality, during the handover.

Mobile
Station

Open Flow
Switch Network

Mobile agent
module

OpenFlow
Modules

Open Flow
control channel

WiFi AP WiFi AP
WiMAX

BS

Open Flow
Mobility channel

: Open Flow Switch module
: Mobility module

Location
DB

WiMAX
BS

Location and routing
related interface

Controller

Data plane

Fig. 8: WiFi-WiMAX seamless handover system

Streaming
ServerOpenFlow

switch
network

OpenFlow
Controller

WiFi

WiMAX

Mobile
station

WiFi is
crowded…

Redirect!!

Handover

Fig. 9: Demonstration system

4.2 Multicast streaming

Looking at video streaming in wired network part,
OpenFlow network is also useful to deliver IP multicast
streaming. In a traditional IP network environment, it takes
time to reconstruct multicast tress when a switch failure or
a link failure occurs because multicast trees cannot be
reconstructed until unicast path is stabilized, therefore
significant packet losses and hence video quality
degradation cannot be avoided. One approach for this
problem is to use redundant trees, but algorithms to
compute redundant tree require centralized computation.
We have been using OpenFlow to realize redundant

multicast trees under IP multicast protocols [22]. We have
presented a design of an OpenFlow controller supporting IP
multicast protocols, e.g. snoops IGMP messages to manage
multicast recipient groups, and a method to set up multiple
multicast trees for fast tree switching.

To evaluate the proposed method, we setup a test
environment consists of NEC IP8800 OpenFlow enabled
Ethernet switches and Linux servers for a sender and
receivers. As shown in Fig. 10, we have tested with three
different topologies having 5, 7, and 9 switches. We sent
30Mbps DV stream from the sender. Figure 11 shows the
switching time to the backup tree and the number of lost
packet when we intentionally disabled one of the links. The
results indicate that multicast packet delivery using
OpenFlow is quite robust to network failures and the
degradation of video quality is quite limited.

Although our implemented code is not open to public,
Simple Multicast found in TremaApps could be some help
to researchers who develop multicast controllers.

Sender

Sender

Switch

Sender

Receiver

Switch

Receiver Receiver Receiver Receiver Receiver

Switch

Switch Switch

Switch Switch

Switch Switch

Switch Switch

Switch
Switch Switch

Switch Switch

Switch Switch

Switch

Switch Switch

Fig. 10: Network topology

0

0.5

1

1.5

2

2.5

3

0

5

10

15

20

25

30

5 7 9

Tree

Switching

Time
Packet

Losses

(switches)

(packets)(msec)

Fig. 11: Evaluation results

4.3 Network access control

Access control to a network, specific hosts, or services, is
an important feature of a network. Wireless access points
have such functionality to let users access to the network.
Firewalls and routers also generally have access control list
capability to block specified flows of packets. However,

ICMU 2012 Copyright © 2012 by Information Processing Society of Japan.
All rights reserved. 169

they only check packets that exactly go though the devices,
thus if terminals move around the network or switch
to/from wireless and wired accesses, access control may not
be applied. In mobile environments, access control must be
applied for any packets from any locations to any locations.

OpenFlow can provide “default-deny” type of
communications, namely a controller dynamically sets up a
path for an authorized flow and other flows are blocked by
default. As shown in Fig.12, when a packet of a new flow
arrives at any switches in the network, it is sent to the
controller. Filtering rule is looked-up with any
combinations of packet header fields according to
associated priority. If a matched rule is found, its associated
action is applied to the flow.

We have evaluated this system using Trema to see the
effects of forcing this any-to-any access control. Figure 13
shows RTTs between host A and B with this access control.
When we only set exact match rules, which exactly
specifies a flow with all applicable packet header fields, no
performance degradation is observed regardless of the
number of rules because hash search performance is not
affected by the number. If we use wildcard matching, which
one or more part of the header fields are wildcarded,
performance degradation is still negligible when the
number of rules is less than 10-100K.

priority match action

100 in_port=8,dl_src=192.~ ALLOW

50 in_port=47,dl_src=172.~ DENY

… …

0 any REDIRECT

OpenFlow network

Drop

Host A Host B

1. Notification

OpenFlow controller

2. Filtering rule look-up

Forwarding

Fig. 12: Access control in OpenFlow network

0

10

20

30

40

50

60

70

R
T
T
(m

s)

number of rules

wildcard match

exact match

Fig. 13: Observed RTT between hosts

5 CONCLUSION

In this paper, we introduced OpenFlow and its
application for network researches and experiments on
wired or wireless network technologies. OpenFlow is quite
useful for researchers to easily deploy their innovative ideas
in experimental or production networks. Programming at a
controller improves research productivity and network
virtualization technologies help researchers share a large
testbed and production facilities. We also introduced our
OpenFlow programming framework Trema, which focuses
on productivity of network researches and experiments.
Trema is designed to cover an entire development cycle of
programming, testing, debugging, and deployment. We also
touched network abstraction and high-level APIs, as well as
TremaApps.

Then, we introduced some of our experiments including
seamless handover between WiFi and WiMAX, multicast
video streaming, and network access control. In these cases,
we have shown a centralized wireless and wired resource
control for efficient wireless link capacity, robust
multicasting, as well as network access control for highly
mobile terminals, which has shown that OpenFlow is quite
useful for wireless and wired network researches.

REFERENCES

[1] NSF NeTS FIND Initiative, http://www.nets-find.net/
[2] “Seventh Framework Programme (FP7)”,

http://cordis.europa.eu/fp7/dc/index.cfm
[3] “GENI”,available at http://www.geni.net/
[4] “JGN2plus”,

http://www.jgn.nict.go.jp/english/index.html
[5] L. Peterson, S. Sevinc, J. Lepreau, R. Ricci, J.

Wroclawski, T. Faber, and S. Schwab, “Slice-Based

ICMU 2012 Copyright © 2012 by Information Processing Society of Japan.
All rights reserved. 170

Facility Architecture”,
http://www.cs.princeton.edu/~llp/arch_abridged.pdf

[6] N. McKeown, T. Anderson, H. Balakrishnan, G.
Parulkar, L. Peterson, J. Rexford, S. Shenker, and J.
Turner, “Openflow: enabling innovation in campus
networks,” SIGCOMM Comput. Commun. Rev.,
vol.38, no.2. 2008.

[7] N. Feamster, H. Balakrishnan, J. Rexford, A. Shaikh,
and J. van der Merwe, “The case for separating
routing from routers,” in Proc. ACM SIGCOMM
Workshop on Future Directions in Network
Architecture, 2004.

[8] M. Casado, T. Garfinkel, A. Akella, M. Freedman, D.
Boneh, N. McKeown, and S. Shenker, “SANE: A
protection architecture for enterprise networks,” in
Usenix Security, 2006.

[9] “Trema: Full-Stack OpenFlow Framework in Ruby
and C”, http://trema.github.com/trema/

[10] Trema repository, https://github.com/trema/trema
[11] TremaApps repository,

https://github.com/trema/apps
[12] NOX, POX, available at http://www.noxrepo.org/
[13] Beacon,

https://openflow.stanford.edu/display/Beacon/Home
[14] Floodlight, http://floodlight.openflowhub.org/
[15] T. Koponen, M. Casado, N. Gude, J. Stribling, L.

Poutievski, M. Zhu, R. Ramanathan, Y. Iwata, H.
Inoue, T. Hama, and S. Shenker. Onix: A Distributed
Control Platform for Large-scale Production Networks.
In the Proc. of the 9th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
10), 2010.

[16] Sherwood, R., Gibb, G., Yap, K.-K., Appenzeller, G.,
Casado, M., McKeown, N., and Parulkar, G,
FlowVisor: A Network Virtualization Layer. Tech.
Rep. OPENFLOW-TR-2009-01, OpenFlow
Consortium, 2009.

[17] Mininet,
http://yuba.stanford.edu/foswiki/bin/view/OpenFlow/
Mininet

[18] Y. Chiba and H. Shimonishi, “Network Debugger: A
Unified Tool for Diagnosing Network Controlling
Applications”, World Telecommunications Congress
2012 Workshop on Software Defined Networks
(SDN) and OpenFlow, 2012.

[19] Wireshark, available at http://www.wireshark.org/
[20] Trema Tutorial, 13rd GENI engineering conference,

http://groups.geni.net/geni/wiki/GEC13Agenda/Trema
Tutorial, 2012

[21] Trema Tutorial, 2nd Open Networking Summit,
http://opennetsummit.org/talks/ONS2012/shimonishi-
mon-trema.pdf, 2012

[22] D. Kotani, K. Suzuki, and H. Shimonishi, “A design
and implementation of OpenFlow Controller handling

IP multicast with Fast Tree Switching”, to be
presented at SAINT2012. 2012

ICMU 2012 Copyright © 2012 by Information Processing Society of Japan.
All rights reserved. 171

