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ABSTRACT 

The current and future trend of mobile communications is 

moving towards highly mobile and ubiquitous environment which 

consists of latest radio access technologies, such LTE and 

WiMAX, and previous ones such as wireless LAN which creates a 

heterogeneous environment. In exploiting this kind of environs, 

this manuscript introduced a novel Velocity-centric ACO-inspired 

(Ant Colony Optimization) SCTP Handover system (VASH), with 

specific discussion focused on a Velocity Classification Model 

(VCM) which enables the handover system to adapt its decision 

mechanism with the changes in the mobile node’s velocity. The 

proposed VCM is designed using the artificial neural network 

(ANN). From the experimental evaluation, it can be concluded 

that the proposed model can classify the velocity of the mobile 

node accurately.   
 

Keywords: SCTP, handover, neural network, velocity 

classification. 

1 INTRODUCTION 

In this day and age as well as the coming future, most of 
the communication devices which are becoming the 
necessity of the users consist of mobile devices such as 
smartphones and mobile tablets. Furthermore, with the 
introduction of the latest wireless broadband (WBB) 
technology such as the WiMAX (Worldwide 
Interoperability for Microwave Access) [1] and the 3GPP 
Long Term Evolution (LTE/LTE-Advanced) [2] which are 
part of the fourth generation wireless-communication 
technology (4G), more working equipment with more 
powerful specifications such as high-end laptops and tablets 
are equipped with the capability to access these 4G WBBs. 
Meanwhile, for users with devices that do not come with 
these capabilities, most Internet service providers (ISP) 
offers an alternative to connect to a WBB network by 
providing a mobile modem which creates a wireless LAN 
(WLAN) network for subscribers anywhere they like. In a 
nutshell, in this era, users are moving towards mobile 
services which can be accessed anytime and anywhere they 
like. 

When considering a wireless network environment, it is 
obvious that the mobile devices will not always be 
connected to the same network while the users are moving. 
Hence, in order to maintain continuous connection to the 
network, a handover (HO) procedure is unavoidable. 
Furthermore, to widen the coverage area available for the 
users as well as to add more flexibility, a handover scheme 
that offers the ability to traverse from one radio access 
technology (RAT), for example,  WLAN, to another 

different RAT, for example WiMAX  or LTE, and vice-
versa is most desirable. The heterogeneity of current and 
future RAT makes it possible to overcome the limitations of 
the different RATs available by initiating a vertical 
handover (VHO) [3]. 

 A lot of discussion and debates on the layer best suited 
for mobility (handover initiation and process in particular) 
have been done in the field of network handover research. 
According to [4], the most suitable layer for handover is the 
Transport layer.  Moreover, on the transport layer, the 
Stream Control Transmission Protocol (SCTP) is a new 
protocol which offers the best features to cater for a 
seamless handover [5]. This protocol has been implemented 
in some of the latest researches in this field [6], [7].  These 
works initiates the handover process by referring to the 
received signal strength (RSS) and the end-to-end delay 
(ETED) between two connected nodes based on static 
threshold values, thus, limiting the handover scheme to the 
threshold restrictions. Consequently, the specific threshold 
might give the optimal handover performance for certain 
situations, but may not be the best for other different 
situations. 

In order to enhance the flexibility and scalability of the 
handover system, several factors can be considered in 
determining the right configuration for the right scenario. 
These works in particular, [8] and [9], shows that a different 
threshold configuration can give different performance 
outcomes. Hence, in this manuscript, a novel HO system 
which is initiated on the transport layer using the SCTP 
protocol and an Ant Colony Optimization (ACO) inspired 
selection rule. Then, in order to enhance the ability of the 
HO system to adapt to different types of scenarios, a 
practical velocity estimation algorithm will be discussed in 
this work. The contribution of this manuscript can be 
summarized as follows: 

- The main contribution of this manuscript; a practical 
velocity classification model (VCM) using artificial 
neural network (ANN) is proposed, and the simulation 
results shows that the VCM can classify the velocity of 
the mobile node (MN) accurately. 

- Proposing a novel handover system implemented on 
SCTP with a handover target selection algorithm 
inspired by ACO. Then the selection algorithm is 
expected to adapt to the velocity classification of the 
mobile node (MN) based on the VCM.   

This paper is organized as follows: Section 2 reviews the 
related work. Section 3 describes the proposed handover 
system. A novel ANN velocity classifying model is 
proposed in section 4. In section 5 the effectiveness of the 
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proposed VCM is thoroughly evaluated. Finally, section 6 
concludes this work and draws out the conclusion and 
future research directions. 

2 RELATED WORK 

Many researches on handover initiation and handover 
strategy have been done and are still continuing.  A 
summary of the basis of handover design have been 
discussed in [9]. One of the most used parameters in HO 
initiation is the RSS. Then in order to prevent the ping-pong 
effect, the RSS value is used with either threshold or 
hysteresis, or even both of them at once. From this study, it 
can be understood that the threshold selection is a crucial 
point which will affect the performance of a handover 
design.  From [9], the idea of using RSSI is established as 
the most basic and maybe the most effective parameter to be 
considered for a HO initiation.  

Next, in [10], the authors studied the drawback of the 
handover initiation method implemented in the traditional 
SCTP, which is, in nature, failure-centric. The SCTP 
originally initiates a HO when the current primary path or 
network connection fails four times consecutively (meaning 
after four retransmission time out (RTO)). The work in [10] 
proposes a delay-centric HO initiation approach, where the 
end-to-end delay is used as the initiating parameter. The 
ETED signifies the congestion level of the corresponding 
network, where a long ETED signifies that the network is 
congested, whilst a short ETED shows that the network is 
free. Hence, this parameter is also of importance in 
commencing a HO. 

 A synergistic approach where parameters used in both 
previous works, [9] and [10], have been proposed in [6] and 
[7]. The authors of [6] have proposed an endpoint-centric 
handover, which considers both MOS (Mean Opinion 
Score) and RSS in the HO decision and initiates the HO on 
SCTP. This scheme constantly checks the MOS and RSS, 
and when one of the parameters hits a threshold, a HO 
decision will be made. Similar to this work, [7], uses the 
ETED and RSS as the decision criteria, proposes a more 
simplistic HO decision by implementing the ACO 
probabilistic equation as the path or target network selector. 
Both methods could overcome the previous works which 
only consider one HO decision parameter. However, due to 
the fact that both depend on a certain threshold, both 
methods will only provide optimal handover outcome for a 
specific scenario, or specifically, a certain velocity. 

In the current high mobility generation, the speed of a 
MN is also crucial, because service consumers nowadays are 
always on the go and move at various kinds of speed. 
Hence, intuitively, some configurations of threshold might 
be suitable for a certain range of velocity, but might not be 
suitable for a different range of velocity. This point is 
strengthened by the conclusions in [11]. Hence, to obtain the 
velocity of the MN, a velocity estimation model or 
algorithm is needed.  

The authors in [12] discussed about a velocity estimation 
algorithm based on the Okumura-Hata path loss model. 
They manipulated the formula and derived a velocity 
estimation equation in order to trigger the handover. The 
outcome of the proposed model shows superior handover 
performance (less ping pong effect) than the traditional way 
of initiating HO using HO hysteresis margin (HOM) and 
time-to-trigger HO (TTT) [10]. The estimation obtained has 
correct estimation with minimal delay which increases as the 
velocity of the mobile node increases.   

Meanwhile, a fuzzy-based handover system which uses 
three layers of fuzzy logic controllers (FLCs) to classify the 
MN into two category of velocity, which are, slow (velocity 
< 40km/h) and fast (velocity > 40km/h) was discussed in 
[13]. After the speed classification by the first FLCs, the 
second or the third FLC will then make decision whether to 
initiate a HO accordingly for when the MN is slow or fast. 
The speed of the MN is determined using the distance and 
the error ration. However, the target scenario was for 
cellular networks, where the distance of the MN from the 
BS is calculated by the BS itself and the HO process is 
network initiated. Hence, a more practical proposition on the 
velocity classification acquisition model is needed for a 
terminal initiated HO. 

This work is the continuation of our previous work in [7] 
which has already proposed a HO initiation strategy, which 
is part of a complete system which will be introduced in this 
work. Then the discussion will be focused on the velocity 
classification model in section four. In the next section, the 
components of the HO system will be discussed in more 
detail.   

3 VELOCITY-CENTRIC ACO-INSPIRED 

SCTP HANDOVER SYSTEM (VASH)  

This section discusses the proposed Velocity-centric 

ACO-inspired SCTP Handover System (VASH). Before 

moving to the proposed system, let’s delve into the smaller 

components that serve as the building blocks of the 

proposed system. This system consists of three main 

components: 

1. Velocity Classification Model (VCM) 

2. Probing Initiation Decider (PID) 

3. Path Selection Mechanism (PSM) 

In this section, the PSM will be introduced.  The VCM 

will be discussed thoroughly in the following section whilst 

the PID will not be discussed in this manuscript and will be 

discussed in future studies.  

3.1 Path Selection Mechanism 

The path selection mechanism comprises of two main 

components which are the SCTP component and the ACO 

probabilistic equation (APE) component. 
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SCTP: The Stream Control Transmission Protocol is a 

general-purpose transport protocol for IP network data 

communication, similar to UDP and TCP. The motivation 

behind the development of this protocol is to overcome the 

shortcomings of TCP and UDP in the transportation of 

telephony signaling messages over IP networks. UDP only 

supports unreliable data transfer service whilst TCP faces 

the problem of head-of-line blocking and has no built-in 

support for multi-homing which enables link or path-level 

redundancy [14]. The two main features of SCTP which is 

relevant to this work are the multi-homing feature and the 

heartbeat chunk. SCTP has a multi-homing capability built 

into its core, where a MN which has more than one IP 

addresses will be able to bind several IP addresses and 

network interface cards (NICs) in a single association, thus, 

creating multiple paths from the MN to its corresponding 

node (CN). One of these paths will become the primary 

path, and the MN will be able to switch to another available 

path, if the current primary path deteriorates. Meanwhile, 

heartbeat chunks are deployed periodically in each path in 

order to monitor the availability of that path. 

APE: The Ant System [15] is an optimization method 

inspired by the foraging (the act of searching for food or 

provision) behavior of some ant species. As these ants 

move along a path, it will drop some pheromone to mark 

the favorable path so that other members of the colony will 

follow that path. An example of the foraging behavior of 

ants is as depicted in figure 1. Two ants set out to find food 

for the nest. One of them moves towards the shortest path 

whilst the other goes to the longer path. At t=1, the first ant 

has already reached the food and arrive back at the nest at 

t=2, leaving two layers of pheromone (higher pheromone 

intensity). At t=3, the pheromone intensity of the shorter 

path will increase, thus, other ants from the nest will choose 

this path, due to the higher pheromone intensity. 

 

Figure 1.  Foraging behavior of ants. 

The path selection method used in this work is based on the 

probabilistic equation of the Ant System, which was 

developed by Dorigo [15]. The APE is as shown in 

equation (1), where the probability of moving from node i 

to node j is given as: 
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where τij represents the a posteriori effectiveness of the 

move from node i to node j, as expressed in the pheromone 

intensity of the corresponding link, (i, j); ηij represents the a 

priori effectiveness of the move from i to j (i.e. the 

attractiveness, or desirability of the move), computed using 

some heuristic. 

The PSM was developed based on these two components. 

The implementation of the SCTP component will ensure 

the seamlessness of the handover process, because, 

theoretically, there will be no network connection 

disruptions during the HO due to the multi-homing 

capability of the SCTP. Furthermore, using the heartbeat 

chunks, the MN will be able to estimate the ETED of each 

path in its SCTP association. Combining that information 

with the RSS collected from the Physical layer, the MN will 

be able to discern the best path to switch to by calculating 

the probability of choosing each path using the adapted 

APE (as in equation (2)).  
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Pi is the probability of choosing path i. Tau, τi, is the ETED 

of path i, which represents the pheromone of the path when 

referred to the example in figure 1. Eta, ηi, is the RSS of the 

NIC connected to path i which is obtained from the 

physical layer. The indices or the power of both parameters 

τi and ηi (α and β) is configured as 0.5 to give fair 

weightage to both parameters. As discussed earlier, this 

configuration will give the best results for certain scenarios 

only. These weightage can be configured to give the best 

outcome for different scenarios. That is why the VCM is 

needed in order for the MN to decide which configuration 

is the best for the current scenario (in this case the scenario 

directly corresponds to the diversity of velocity experienced 

by the MN). 

3.2 VASH Architecture 

As discussed earlier in this section, the VASH has three 
main components which are the VCM, PID and the PSM. 
The features and functions of the PSM have been discussed 
thoroughly in the previous subsection. The VCM is needed 
in order to estimate the velocity of the MN and classify 
whether the MN is moving at a low, medium or high 
velocity. This feature is important in discerning the best 
configuration for the PSM as well as the timing for PID. In 

Nest Food Nest Food

Nest Food Nest Food

Pheromone intensity scale

t=0 t=1
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[6] and [7], the heartbeat chunk is used to probe all existing 
paths between MN and CN. These trains of chunks are sent 
constantly through all available paths causing an increase of 
load traffic to all networks involved. Hence, PID is 
introduced in VASH in order to mitigate the load inflicted to 
the network due to the probing schemes used in [6] and [7]. 
The architecture of VASH is as shown in figure 2.  

 

Figure 2.  VASH components 

From the classification made by VCM, the PID will decide 
when the Probing will start (start sending heartbeat chunk) 
whilst the PSM can reconfigure to the best weightage 
configuration for the current environment or situation faced 
by the MN. 

4 ANN-BASED VELOCITY 

CLASSIFICATION MODEL 

The velocity of the MN is one of the most important 
factors in the current and future mobile wireless scenario. 
According to [12], the RSS of a MN depends on the distance 
between the MN and the base station (BS) it is attached to. 
Therefore, the vector velocity of the mobile node will be 
made of 2 components which are the radial velocity, vr, 
which is in meter per second (m/sec), and its counterpart, the 
so-called radian velocity, vθ, which is in radian per second 
(rad/sec). Hence, the vector compound of the MN’s velocity 
can be expressed as in the following equation: 


vvv

r



 (3) 

However, the value of RSS is directly influenced by the vr, 
whereas, the changes in vθ does not affect the value of RSS. 
For example, let there be two MNs Y and Z, where Y is 

moving away from the BS at the speed of 
Yv


whilst Z is 

moving around the BS at the speed of 
Zv


and the distance 

between Z and the BS is always constant (x meters) as 
depicted in figure 3. When broken down to the velocity 
components of each MN, the radial component of both MNs 

would be; Y

r
v = 

Yv and Z

r
v = 0; whilst the radian components 

would be; Yv


= 0 and Zv


=
Zv .  As time passes, the RSS of Y 

will decrease due to the increment of distance between Y 
and the base station. The RSS of Z, on the other hand, does 

not change, due to the fact that the distance between itself 
and the BS is constantly at x meters. Taking this idea into 
account, it can be deduced that the radial velocity, vr, or in 
other words, the rate of change of the distance between the 
MN and its connected BS, is proportional to the rate of 
change of RSS received by MN. Hence, it can be established 
that it is possible to estimate the vr from the value of RSS. 
Subsequently, the VCM model is developed with this 
concept in mind. 

 

Figure 3.  Difference between 
r

v and 


v . 

Before moving into more detail on the VCM, some 

understanding of the components used in this model should 

be established. In the following subsections, the overview 

of the ANN will be discussed briefly. 

4.1 The Overview of the ANN 

  An artificial neuron (AN) is a model or a representation 
of the biological neuron (BN). The AN will gather signals 
from the environments or other ANs, and when fired, it will 
transmit a signal to all connected ANs. A representation of 
the AN is as depicted in figure 4. Each connection to the AN 
from the input signals are associated with positive or 
negative weight which will excite or inhibit the input signals 
respectively. The activation function controls the firing of an 
AN and the strength of the exiting signal. All the incoming 
signals collected are computed as a net input signal as a 
function of the respective weights by the AN. The net input 
is then used as the input to the activation function which will 
calculate the output signal of the AN [16].    

 
Figure 4.  Artifical Neuron 

An artificial neural network (ANN) is a layered network of 
ANs. Generally, an ANN is built of three layers which are 
the input layer, hidden layer and output layer. ANs in one 
layer are partially or fully connected to the ANs of the next 
layer. It is also possible for feedback connections to 
previous layers [16].   
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4.2 The proposed VCM 

The Velocity Classification Model developed in order to 
classify the MN into three classes of velocity. The velocity 
classes are decided based on the work done in [17] which is 
as follows: 

 

Class Velocity Range 

Pedestrian v < 15km/h 

Vehicle 15km/h  ≤ v ≤ 90km/h 

Express bus/train v > 90km/h 
Table 1. Velocity Classing 

The input used for the velocity classification is the RSS 
and the rate of change of RSS, ΔRSS.  As can be seen from 
figure 5, the RSS received by the MN has the shape similar 
to a Gaussian distribution; hence, the ΔRSS will also vary 
with different level of RSS. It can be inferred that at certain 
level of RSS, the value of ΔRSS will also vary with different 
velocity. Thus, the value of both RSS and ΔRSS will be 
used to infer the velocity of the MN. Figure 5 is sample of 
the RSS and ΔRSS of five different velocities (1m/s to 5m/s). 
From this figure, the data points from 0 to 130 is the RSS 
and ΔRSS for 1m/s; data points from 131 to 240 is for 2m/s; 
data points from 241 to 350 is for 3m/s; data points from 
351 to 450 is for 4m/s; data points from 451 to 550 is for 5/s.   
The have been simulated using inetmanet module for 
OMNeT++ ver. 4.1 [17].  

 

Figure 5.  Sample data of the normalized RSS and the RSSs-1 (dBm/s) 

ANN model: The VCM model consists of two main blocks 
which are the ANN1, ANN2. The ANN1 uses the input data 
(RSS

i
sensed and ΔRSS

i
sensed) to estimate the velocity of the 

MN whilst the ANN2 will use the output of ANN1 to 
classify the velocity into the classes as in table 1. Figure 6 
illustrates the design of the ANN component. However, due 
to the characteristic of the input data, even though the 
outcome output of the ANN model has a very high 
correlation with the desired output (a regression value of R = 
0.99), there are some fluctuations in the output, which might 
inflict some error to the final velocity classification. Thence, 
the moving average component is added to filter out the 
fluctuation in the output obtained from the ANN model. 

Figure 7 depicts the complete VCM model. The inputs 
RSS

i
sensed and ΔRSS

i
sensed are first filtered by the moving 

average (MA) component giving an averaged value of 
MRSS

i
sensed and MΔRSS

i
sensed

 
(the label i signifies the BS 

that the MN is currently connected to). Then these values 
will be injected into the ANN1 which will produce a rough 
estimation of the MN’s velocity, V

i
est. This value will be 

filtered again with another MA before inserted into the 
ANN2 which will give the estimated velocity classification, 
VC

i
est. 

Figure 6.  ANN1 and ANN2 design 

 

Figure 7.  VCM Design 

5   EVALUATION 

To evaluate the proposed velocity classification model, a 

set of data was generated using inetmanet module for 

OMNeT++ ver. 4.1 as discussed in the previous section. 

The data collected was on the RSS value for a MN when it 

is moving at a constant speed. The simulation was executed 

for MN moving starting from a radial velocity of vr = 1m/s 

up to vr = 30m/s with a step of 1m/s. The data for ΔRSS 

was derived from this data. The ANN1 and ANN2 model 

were trained using the compilation of data from 1m/s up to 

30 m/s (similar to figure 5) and the target velocity 

classification was given to the data according to the class 

range in table 1. The process is divided into two parts. The 

first part is the velocity estimation by ANN1. ANN1 was 

trained and tested using the simulation data. Figure 8 

depicts the regression plot of ANN1. 

 

Figure 8.  Regression Plot of ANN1 
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The x-axis is the real velocity (target), whilst the y-axis is 

the estimated velocity. It can be seen that the velocity 

estimated by ANN1 are mostly near or on the best fitting 

line and the R value obtained is 0.9965 which is very close 

to 1. These facts show that the estimated velocity has a very 

high correlation with the real velocity.  Figure 9 shows the 

outcome of ANN1. As can be seen, the pattern of the 

estimated velocity is very similar to the target velocity. The 

estimation error becomes apparent after 20m/s. However, 

the deviated value is still acceptable. When compared to the 

evaluation in [12] (please refer [12]), the estimated value 

using ANN1 is comparable to the estimated velocity in [12]. 

 
Figure 9.  Comparison between estimated velocity and the desired target 

velocity 

Then the output of ANN1 is used to train and test ANN2. 

The outcome is as shown in figures 10 and 11. Figure 10 

shows the regression plot of ANN2.The R value of 2 

clarifies that the output of ANN2 shows high correlation 

with the real value.  

 
Figure 10.  Regression Plot of ANN2 

In figure 11, the input data points from 1 to 450 are in the 

range of the first class shown in table 1, also labeled as 

“Pedestrian”. Next, the data points from 451 to 1100 are in 

the range of the second class, “Vehicle”, whilst data points 

from 1101 to 1200 falls under the third class, “Express 

bus/train”.  The outcome in figure 11 shows that the 

proposed VCM can accurately classify the velocity of the 

MN according to the classes in table 1. 

To test the effectiveness of the proposed model, the 

proposed VCM is compared to the Velocity Estimation 

Method done in [12]. The outcome is as depicted in figure 

12. This figure shows the classification done by each 

technique for each velocity (ranging from 1m/s to 30m/s). 

The y-axis of this graph is the velocity class, where 1, 2 and 

3 signifies the “pedestrian”,“vehicle” and “express 

bus/train” classes respectively. The data from [12] was 

processed using thresholds according to table1. As can be 

seen in this figure, the VCM has better accuracy than the 

MEM. This is due to the increment of estimation error in 

the MEM as the velocity of the MN increases. However, 

even though in acuality, the error of MEM increases with 

the increment of velocity, the classification done by the 

MEM for velocities besides 24m/s are still accurate due to 

the thresholding characteristic of the classification 

approach. If the complete data of MEM is also trained using 

ANN2, an accurate classification estimation can be 

expected. 

 

Figure 11.  Comparison between the VCM output and the desired target 

 

Figure 12.  Comparison Between VCM and MEM 

6 CONCLUSION AND FUTURE WORK 

The layout of a novel handover system, specifically, the 

Velocity-centric ACO-inspired SCTP Handover System 

(VASH) which can adapt to the changes in the RSS, end to 

end delay and the velocity of the mobile node has been 

proposed. This system is built up from three main 

components which are; the Path Selection Mechanism 

(PSM) which determines the best path for the MN to 

handover its connection; the Velocity Classification Model 
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(VCM) which classifies the MN’s velocity; and the Probe 

Initiation Decider (PID) which decides when the MN 

should start probing.  

 The main focus of this manuscript is on the design and 

development of the VCM. The VCM is developed using 

ANN and the effectiveness of the Velocity Classification 

was thoroughly evaluated. The evaluation results show that 

the proposed VCM is effective and can classify the velocity 

of mobile nodes or devices accurately. Furthermore, the 

proposed VCM shows comparable performance when 

compared with mobility estimation method in previous 

work. 

The velocity classification in other radio access 

technology environment will be investigated in order to 

increase the scalability of the proposed work. Besides that, 

the effect of different configurations of the ACO 

probabilistic equation with different velocity will be 

thoroughly examined in order to design the PID.  
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