
Uncertain Penetration Rate Issues in Mobile Intelligent Transportation Systems  

Quang Tran Minh, Muhammad Ariff Baharudin, Eiji Kamioka  

 

Graduate school of Engineering and Science, Shibaura Institute of Technology, Tokyo, Japan 

{m709504, nb11507, kamioka}@shibaura-it.ac.jp  

 

ABSTRACT 

This paper thoroughly discusses the essential issues remaining 

in mobile phone technologies which impede the realization of 

mobile phone based traffic state estimation systems (M-TESs). 

Concretely, the inherent issues in mobile phone based applications, 

namely low and uncertain penetration rate issues, which affect 

the M-TES’s effectiveness, are resolved. A unique GA-based 

velocity-density estimation mechanism is proposed to improve the 

traffic state estimation accuracy when the penetration rate is low 

but still be relevant. A novel ANN-based prediction model is 

proposed to cope with unacceptably low and uncertain penetration 

rate issues. Moreover, a reasonable selection method is proposed 

aiming at selecting an appropriate traffic state estimation model 

without the actual penetration rate information. Experimental 

evaluations reveal the effectiveness as well as the robustness of 

the proposed solutions. 
 

Keywords: mobile probes, low penetration rate, context-

aware, genetic algorithm, neural network, ITS, M-ITS. 

1 INTRODUCTION 

Transportation and road traffic are important parts of any 
economy. Meanwhile, traffic congestion still remains as a 
serious issue in almost every big city across the world. The 
Ministry of Land Infrastructure and Transport of Japan 
reported in 2006 that the economic loss caused by traffic 
jam is around $100 billion annually [1]. The Urban Mobility 
Report [2] reported in 2007 that traffic congestion causes 4.2 
billion hours of extra travel time in the United States, 
accounting for 2.9 billion extra gallons of fuel [3]. Traffic 
state estimation is one of the most important fields in 
Intelligent Transportation Systems (ITS) research to 
alleviate traffic congestion. Existing systems utilize road-
side fixed sensors such as loop detectors [4], RFID readers 
[5], cameras [6], etc., for real-time traffic data collection. 
However, these approaches face on the coverage limitation 
since it is impractical to install a huge number of sensors at 
every street. 

In recent years, with the advances of mobile phone 
technologies, mobile devices have been utilized as traffic 
probes [7], [8]. Since mobile phones are available 
everywhere and mobile phone networks have already been 
deployed, the essential issues in traditional road-side fixed 
sensor approaches such as coverage limitation, real-time 
effect, investment cost, etc., can be overcome. As a result, 
the mobile phone based ITS (M-ITS) research is entering a 
new stage accelerating the realization of mobile phone based 
traffic state estimation systems (M-TES).  

In spite of the aforementioned advantages, the M-TES 
faces on several issues ranging from comprehensively 
estimating traffic state using less informative traffic data 
reported by mobile devices [9], to effectively removing 
errors rooted from low and uncertain penetration rate [3], 
[10]. Firstly, in M-TES, traffic data is collected by mobile 
phones on which GPS (Global Positioning System) receiver 
is only the common sensor available. However, the GPS 
data such as position (longitude, latitude), direction, 
velocity, etc., of vehicles in a traffic flow is not sufficient 
traffic state information than the drivers expect. Secondly, 
the penetration rate, namely the fraction of the number of 
vehicles that report data to the estimation server out of the 
total number of vehicles traveling through the considered 
road segment, is commonly low, or more seriously, is 
unknown at the estimation time. To the best of our 
knowledge, no research thoroughly discusses these issues. 
This article aims at proposing notable approaches coping 
with the low and uncertain penetration rate issues. 
Contributions of this paper are summarized as follows: 

- Proposing reasonable solutions for penetration rate 
related issues. As a result, a novel GA-based velocity-
density estimation mechanism and a unique ANN-based 
prediction model are proposed to deal with difficulties 
rooted from low penetration rate.  

- A practical selection method aiming at selecting 
appropriate estimation model among two estimation 
models mentioned above under the condition of 
uncertain penetration rate is proposed. 

This paper is organized as follows: Section 2 reviews the 
related work. Section 3 describes the problem formulation. 
A novel GA-based velocity-density inference model is 
proposed in section 4. Section 5 proposes an appropriate 
ANN-based prediction model to predict traffic state when 
the penetration rate becomes unacceptably low or unknown. 
Section 6 proposes a practical selection method for 
selecting an appropriate traffic state estimation model. The 
effectiveness of the proposed approaches is thoroughly 
evaluated in section 7. Section 8 concludes this work and 
draws out the future research directions. 

2 RELATED WORK 

Existing traffic state estimation systems such as VICS 
[11], NAVITIME [12] in Japan, the ITS project at Kansas, 
USA [13] mainly rely on road-side fixed sensors for traffic 
data collection. These road-side fixed sensor systems are 
costly in terms of initial installation and maintenance, thus 
they confront the coverage limitation issue. Theoretically, 
Ad-hoc network technology [1] can help to improve the 
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coverage but it is not matured enough to be applied in real-
world applications. Mobile Millennium Project (MMP) [14] 
is closely related to this work which employs GPS-enable 
mobile phones as traffic probes for real-time data collection. 
An estimation server at the system center processes traffic 
data, estimates traffic state, and informs drivers of estimated 
traffic information. The drawbacks of this project are as 
follows: 

1) The MMP estimated traffic state by employing the 
dynamical theory to analyze vehicle flows on road networks. 
Obviously, the dynamical theory may work effectively in an 
environment of short traffic flows. It may reveal, however, 
serious errors when applying to environments of complex 
network with long roads.  

2) Low and uncertain penetration rate issues were not 
discussed in the MMP.  

R. Herring, at el. [3] proposed a statistical learning model 

to estimate traffic state in terms of travel time and 

congestion state considering low penetration rate. As 

claimed, their model works effectively even if the 

penetration rate is as low as 5%. However, several issues 

are remaining that need to be thoroughly discussed. First, 

this work did not mention the effect of the traffic flow 

density on traffic state. Second, the congestion state was 

defined as a “binary” indicator which accepts only two 

states, namely “congested” and “not-congested”. 

Obviously, this setting biases the estimation accuracy since 

even the “blind” guessing approach also has an opportunity 

to reach 50% of accuracy. Third, this work employed the 

Paramics simulator [15] to generate synthetic data which 

gives information about every vehicle. To imitate a low 

penetration rate dataset, namely 5% for example, a large 

portion of data (95%) was removed and only a subset of 5% 

of data was kept. In fact, this process could not generate the 

appropriate low penetration rate dataset as it was defined in 

their work. Therefore, the relation between the estimation 

error and the penetration rate obtained in that research 

should be clarified. 

Our previous work in [9] has proposed a notable traffic 

state quantification model by which less informative traffic 

data reported by mobile devices can be effectively 

processed to granularly quantify traffic state levels. This 

work focuses on solving the inherent issues of low and 

uncertain penetration rate, that is to say, one of the most 

essential issues in mobile phone based applications such as 

the M-TES.   

3 PROBLEM FORMULATION  

This section presents the problem formulation, namely 

estimating traffic state based on only the GPS data reported 

by mobile phones considering low and uncertain 

penetration rate issues.  

3.1 Traffic State Estimation in M-TES 

Traffic characteristics commonly vary from road 

segments to road segments, thus traffic state should be 

estimated based on a road segment basis. Considering a 

road network of N road segments, the set of all road 

segments is denoted as V={i|i = 1..N}. For any road 

segment i, traffic data (GPS data) is available at any time t. 

However, this data is the event-based data which cannot be 

directly transformed into traffic state. Therefore, traffic 

state should be aggregated in predefined time intervals, 

namely in t-second windows, such as in each minute, for 

example. Concretely, traffic state is estimated at times k = 0, 

t, 2t,..., where t is the aggregation time mentioned above.  

Obviously, velocity and density of a traffic flow directly 
reflect traffic condition of a road segment. Therefore, these 
factors should be estimated independently using the data 
reported by mobile phones before integrating for traffic state 
estimation.  

Definition 1: The average velocity of the traffic flow in 

the road segment i during time k, denoted as ik

AvgV , , is the 

average velocity of all vehicles travelling in the considered 
road segment and is calculated in equation (1). 
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Here, ik

jtm
V ,

,
is the velocity of any individual vehicle j (j = 

1…q) detected at time tm (m = 1, 2,..., r) during time interval 
k ([k-1]t ≤ tm < kt), q is the total number of vehicles, and r is 
the total number of detection times during time interval k. 

Definition 2: The density of the traffic flow in the road 
segment i during time k, denoted as ikD , , is defined in 

equation (2). Where, ikq , is the total number of vehicles 

travelling through the road segment i during time k, and ikC ,  

is the maximum capacity of the road segment i during time k.  
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Traffic state of the considered road segment i during 

time k is estimated based on velocity ( ik

AvgV , ) and density 

( ikD , ). Therefore, any error in estimating velocity or density 
will be propagated to the error of traffic state estimation. 
This section investigates the effect of low penetration rate 
on velocity and density estimations.  

3.2 Effect of the Low Penetration Rate  

In the M-TES, traffic state is estimated based on the data 
reported by mobile phones carried by vehicles. In practice, it 
is impossible to compel every mobile phone user to report 
data to the estimation server. Therefore, the penetration rate 
is commonly low declining the estimation effectiveness. The 
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formal definition of the penetration rate and its effect on the 
M-TES’s accuracy are as follows: 

Definition 3: The penetration rate at the road segment i 

during time k, denoted as ik , , is defined in equation (3) and 

illustrated in Fig.1. Here, p is the number of vehicles that 
report data to the estimation server, and q is the total number 
of vehicles travelling in the road segment i during time k. 

  q

pik ,
          (3) 

 

 

Figure 1.  Vehicles that report data are denoted as the car-shape ones, the 
penetration rate here is ρk,i = p/q = 8/15 

With a given penetration rate ik , , the average velocity 

estimation model described in equation (1) must be replaced 

with equation (4). Here, ik

jtm
V ,

,
is the velocity of an individual 

vehicle j (j = 1..q) detected at time tm (m = 1, 2,...r) during 
time interval k ([k-1]t ≤ tm < kt), q is the total number of 
vehicles traveling in the considered road segment, and r is 
the total data reporting times  during time k.  
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Under this condition of penetration rate, the average 
velocity estimation error, E

k,i
V, can be expressed in equation 

(5), where 
ik

AvgV ,

is the “actual” average velocity estimated 
when every vehicle reports data to the estimation server 

(equation (1)), and 
ikik

AvgV
,,, 

is the average velocity estimated 

under the given penetration rate 
ik , (equation (4)). 
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Similar to average velocity, density estimation is also 

affected by the penetration rate. According to the density 

definition described in equation (2), the density estimation 

error, denoted as ik

DE , in equation (6), is directly affected by 

ik , . Obviously, if ik , is 20%, ik

DE , is as large as 80%, an 

unacceptable error for any estimation model. Meanwhile, 

the penetration rate of 20% or lower is usual in practice.  

Figure 2 shows the effect of penetration rate on velocity 

and density estimation accuracy. Here, D_err, representing 

E
k,i

D, was calculated directly from equation (6), and V_err, 

representing E
k,i

V, was obtained using simulation data. This 

figure reveals that the density estimation is more seriously, 

compared to that of the velocity estimation, affected by low 

penetration rate.    

 

 

 

 

 

 

 

 

 

 

Figure 2.  Effect of penetration rate on velocity and density estimations 

4 GA-BASED VELOCITY-DENSITY 

INFERENCE CIRCUIT  

In order to alleviate errors rooted from low penetration 
rate mentioned in the previous section, a novel genetic 
algorithm (GA) [17] based velocity-density inference circuit 
is proposed. This model is depicted in Fig.3, where both the 
velocity and density calculated directly from the sensed data 
collected by mobile phones, namely V

k,i
sensed and D

k,i
sensed, are 

served as the primary inputs. The outputs of the circuit are 
the final estimated velocity and density, namely V

k,i
est and 

D
k,i

est. The inferred velocity and density, namely V
k,i

infer, 
D

k,i
infer, obtained by applying the Greenshields model [18] 

are also taken into account. In addition, moving average 
values of estimated velocity and density at time k, namely 
MV

k,i
 and MD

k,i
, calculated using the corresponding values 

estimated in the previous phases are fed back to the 
estimation model. The GA component provides an optimal 
coefficient g motivating optimal estimations.  

 

 

 

 

Figure 3.  The optimal velocity-density inference model circuit  

The philosophies behind this inference model are as 
follows: 1) Velocity and density calculated directly and 
independently from sensed data help to void any error 
propagation. 2) The Greenshields model [18] used to infer 
density from estimated velocity and vice versa, can help to 
avoid the over-error of density estimation when penetration 
rate is unacceptably low. 3) Current traffic state has inherent 
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relationships with previous traffic states at the same road 
segment. 4) All of the estimation approaches (direct 
estimation using sensed data, inference using the 
Greenshields model, inference using the previous estimated 
data) may uphold their advantages while diminishing their 
inherent disadvantages if being appropriately integrated. 

The overall velocity-density inference model is formally 
presented in equations (7) and (8), where α, β, γ are the 
impact coefficients of the corresponding parameters. It 
should be noted that α, β, γ are encapsulated in a simplified 
parameter g, namely g = {α, β, γ}, presented in Fig.3. 

ik

er

ikik

sensed

ik

est VMVVV ,

inf

,,,       
 (7) 

             
ik

er

ikik

sensed

ik

est DMDDD ,

inf

,,,       (8) 

The moving averages and the immediate inferred 
velocity and density at time k, namely MV

k,i
, MD

k,i
, V

k,i
infer 

and D
k,i

infer, respectively, are computed in equations (9), (10), 
(11), and (12). Here, D

i
max and V

i
max are the maximum 

density and the limited velocity of the road segment i; and ξ 
is the sliding window for moving average calculations which 
can be set by domain experts or by using simulation data.  
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It should be noted that D
k,i

infer is inferred directly from 
V

k,i
sensed (equation (11)), while V

k,i
infer is inferred from the 

final estimated density, D
k,i

est (not from D
k,i

sensed while this 
factor is available). This inference policy helps to improve 
the overall estimation effectiveness. The reasons behind this 
design are as follows: The accuracy of V

k,i
sensed is commonly 

better than that of D
k,i

sensed, as shown in Fig. 3, thus D
k,i

infer is 
chosen to be inferred first. When D

k,i
infer is available, D

k,i
est 

can be obtained in equation (8). At this time, both D
k,i

sensed 
and D

k,i
est are available for inferring V

k,i
infer. Obviously, the 

accuracy of D
k,i

est must be better than that of the D
k,i

sensed, 
hence D

k,i
est is employed to infer V

k,i
infer in equation (12). The 

estimation flow is as follow, where Dest and Vest are target 
variables:   

Vsensed  -> Dinfer -> Dest -> Vinfer -> Vest 

The most important key contributing to the estimation 

model described above is the optimization of coefficients α, 

β, γ. In this work, an appropriate GA-based mechanism is 

proposed to optimize the coefficients α, β, γ leading to 

optimize the whole estimation model. Since α, β, γ are real-

value numbers ranging in [0, 1], the proposed GA 

mechanism must have the ability of working with 

chromosomes (solutions) modeled by real-value numbers 

[19]. More concretely, the schema of a chromosome in the 

GA mechanism is coded as g = {α, β, γ} (the chromosome 

of 3 genes). The proposed GA mechanism is depicted as the 

pseudo code in Fig.4. 

Figure 4.  The pseudo code of the Genetic Algorithm  

 

The most important point in applying the GA technique 
to a particular issue is to propose an appropriate fitness 
function for the selection procedure. Here, candidates are 
selected based on their competitiveness evaluated using the 
fitness function proposed in equation (13). 
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Here, e(gi) is the evaluation of candidate gi (gi = {αi, βi, γi}), 

which is the estimation error caused by choosing gi as the 

set of coefficient; and ē(gj) is the average evaluation of all 

individuals gj in the current population. The evaluation e(gi) 

is defined in equation (14), where Vest_gi is the estimated 

velocity (equation (7)) with the set of coefficient gi, and Vact 

is the “actual” velocity. 
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After obtaining the fitness of all chromosomes in a 
population, the GA selects only the ones whose fitness 
values f(gi) are relevant to the crossover process. The 
selection criterion is the minimal of the estimation error, 
e(gi), leading to the minimal of the fitness value, f(gi). That 
is to say, the candidates with smaller fitness values have the 
higher probability to be selected to the crossover process.  

5 TRAFFIC STATE PREDICTION UNDER 

UNACCEPTABLY LOW PENETRATION RATE  

In general, the GA-based velocity-density inference 
model proposed in section 4 improves the M-TES accuracy 
significantly. However, when the penetration rate becomes 
unacceptably low, namely just several percent or even zero, 
the proposed GA model cannot work properly. To address 
this issue, a prediction model should be proposed to predict 
traffic state of unacceptably low penetration rate road 
segments.  

Generating the initial population, P, randomly; 

count = 0; Fitness = 0; n = expected_iteration; 

While (Fitness < threshold) && (count < n){ 

Selecting (); 

Mating (); 

Crossover(); 

Mutation(); 

// P is updated 

for each g in P{ 

Fitness = max(Fitness, g.fitness()); 

} 

count++; 

} 

Output the best chromosome g whose fitness is highest 
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Obviously, traffic state of a road segment is affected by 

traffic state of the nearby road segments. In addition, the 

current traffic state of each road segment has a close 

relation with its previous states. If these spatial-temporal 

relations (rules) are known in advance, traffic state of the 

considered road segment can be predicted. These rules can 

be learned from historical traffic state data by any machine 

learning technique. In this work, an appropriate neural 

network (ANN) with multilayer perceptron (MLP) [20] is 

proposed to predict the average velocity and density of 

considered road segments when their penetration rates 

become unacceptably low or unknown. 

5.1  The Overview of the ANN 

An artificial neural network (ANN) is a computational 
model that is inspired by the structural and/or functional 
aspects of biological neural networks [20]. The basic model 
of an artificial neuron is founded upon the functionality of 
the biological neuron. Each neuron has a computational 
function (the cell body) to process and threshold (i.e. 
mapping the output data into a range of relevant/meaningful 
values such as the range of [0, 1], for example) the coming 
signals (i.e. the input data). The output data of a neuron is 
sent to other neurons for further process. This data is 
accompanied with a weight representing the strength 
(representing the biological synapse) of the connection 
between any two neurons. In the computational concept, this 
weight represents the impact factor of the mentioned data in 
the next computation taken place at the later neuron. 
Connection of neurons results in a neural network by which 
the output data at the “final” neuron(s) can represent some 
kinds of knowledge. Commonly, the ANN is suitable for 
classification and prediction issues. An artificial neuron is 
predicted in Fig.5. 

Figure 5.  Modeling an artificial neuron 

Figure 5 shows that a node (the neuron’s cell body) is fed 

by several data via different entries (dendrites). Each data is 

combined with a particular weight representing the 

biological synapse. A negative weight reflects an inhibitory 

connection, while positive values designate excitatory 

connections. All inputs are summed altogether and 

modified by the weights. Finally, an activation function 

controls the amplitude of the output. For example, an 

acceptable range of output is usually between 0 and 1. The 

neuron output is calculated as y = f(η), where η is the 

interval activity of the neuron identified by the summing 

function of Xiwi (the multiplication of input Xi and 

corresponding synaptic weight wi). The particular activate 

function can be decided by the designer [20]. 

5.2 The Proposed ANN-based Prediction Model 

In this work, the spatial-temporal relations between 

traffic states of road segments which are closed together are 

taken into account for training the ANN model. Figure 6 

illustrates the proposed ANN model. Let i is the considered 

road segment whose penetration rate is unknown and its 

traffic state is needed to be predict. Obviously, the velocity 

and density of the road segment i at time interval k has 

some relations with those of any road segment j (j ∊V) in 

the same region at the same time interval k. Therefore, the 

velocities and densities at time k, of any related road 

segment j, denoted as V
k,j

, D
k,j

, are fed to the ANN model 

for training the aforementioned spatial relation between 

road segment i and its related road segments. 

In addition, traffic state is a complicate phenomenon that 

does not change frequently in terms of time. Concretely, 

given a road segment i, its traffic state at time k may have 

some relations (temporal relations) with its previous traffic 

states, namely at any time t, where t < k. Therefore, the 

proposed ANN model is also fed with the previous velocity 

and density of the considered road segment i, namely V
t,i

, 

D
t,i

  (where t < k), respectively. 

 

 

 

 

 

 

 

 

 

Figure 6.  The ANN-based prediction model dealing with unacceptably 
low penetration rate 

The proposed ANN-based prediction model can be 
formulated in equation (15). The velocity and density of the 
considered road segment i at time k, denoted as V

k,i
pre, D

k,i
pre, 

are predicted by the so-called predict() function, where 
current traffic state of related road segments (V

k,j
, D

k,j
) and 

the previous traffic state of the considered road segment (V
t,i

, 
D

t,i
) mentioned above are served as the input parameters. 
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The ANN-based prediction approach proposed in the 

previous section can cope with the unacceptably low and 

uncertain penetration rate issues. However, since this 

model does not take the real-time traffic data into account 

but relies on only historical data, its effectiveness can not 

be improved when the penetration rate is relevant (large 

enough). In this case, the GA-based mechanism proposed in 

section 4 becomes prominent. Therefore, choosing the 

“right” traffic estimation model among two candidates 

above under the condition of uncertain penetration rate is 

an essential but challenging issue. This section proposes a 

notable method for selecting appropriate estimation model. 

Let denote Vact the “actual” velocity which is represented 

by the solid line in Fig.7. It should be noted that Vact is 

unknown at the estimation time.  Let denote Vann, Vcir the 

velocities estimated using the ANN-based prediction 

(denoted as Ann) and the GA-based velocity-density 

inference (denoted as Cir) models, respectively. The task is 

to approximate the estimated velocity, namely Vest, based 

on Vann and Vcir so that the difference between Vest and Vact 

is minimal.  

 

Figure 7.  The relationship between “actual” and estimated velocities 

considering different penetration rates 

As mentioned in the beginning of this section, the 

estimation error in the Ann method is stable regardless of 

penetration rate, the Vann lies on one of the 2 straight dotted 

lines representing V_annUB and V_annLB, respectively, where 

V_annLB < Vact < V_annUB. These two lines are paralleling with 

the solid line representing Vact. Different with Ann method, 

the Cir model is affected by the penetration rate, that is to 

say, the higher penetration rate is, the lower the error is. 

This relationship is represented by the error estimation 

curve depicted in Fig.3, discussed in section 3.2. Therefore, 

the Vcir lines on one of the 2 curves representing V_cirUB and 

V_cirLB, where V_cirLB < Vact < V_cirUB. The relationship 

between Vact, V_annUB, V_annLB, V_annUB, and V_annLB is 

illustrated in Fig.7. 

As shown, the gap between Vann (namely V_annUB or 

V_annLB) and Vact is kept as a constant regardless of the 

penetration rate. In contrast, the gap between Vann and Vcir 

drastically increases when the penetration rate becomes 

lower than the critical one (the place where Vann and Vcir 

cross each other). This gap is narrow and stable when the 

penetration rate is relevant (larger than the critical one). 

Therefore, this relationship can be utilized to estimate Vest. 

Here, the estimation model for estimating Vest can be 

appropriately selected as described in equation (16), where 

V is defined in equation (17). 
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Equation (17) represents that if the gap between Vann and 

Vcir is larger than a threshold value, namely θ%, then Vest 

should be Vann since the penetration rate is low. In other 

cases (relevant penetration rates), Vest should be 

approximated as Vcir. The threshold θ can be determined by 

experimental data as shown in the evaluation section. 

7 EVALUATION 

This section evaluates the effectiveness of the proposed 

solutions to low and uncertain penetration rate issues. 

Concretely, the effectiveness of the GA-based velocity-

density inference mechanism (denoted as Cir mechanism), 

of the ANN-based prediction approach (denoted as the Ann 

model), and of the selection method for selecting an 

appropriate traffic state estimation model is evaluated. 

7.1 The Experiment Environment  

In this work, the TSF simulator [16] was utilized to 
generate synthetic data for evaluations. Different road 
segments were selected randomly as shown in Fig.8. For 
each selected road segment, different penetration rates, 
namely 20%, 30%, 40%,…, and different levels of density 
were configured at different simulations. In each simulation, 
two types of data were created concurrently as follows:  

 

 

 

 

Figure 8.  Road segmentation in the TSF  

a) The GPS data reported by individual vehicles were 
recorded. Each record contains the Time stamp (in seconds), 
the road segment Id, the position (longitude, latitude), the 
current velocity, and the vehicle Id of the vehicle that reports 
data. The frequency of the data report timing was set to 
every 3s (similar to the common GPS signal frequency).  

b) The summarized traffic state information of the 

selected road segments was also recorded. Each record 

contains the information of the Time interval Id (in 

The road segments 
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minutes), the road segment Id, the average velocity, and the 

density. The time interval for recoding the summarized 

traffic state data was set to every minute. This data was 

used to evaluate the accuracy of the proposed estimation 

methods applying the GPS data described in a).   

7.2 Effectiveness of the GA-based Mechanism 

and the ANN-based Prediction Approach  

Figure 9 represents the effectiveness of the proposed GA 

velocity-density inference circuit (Cir) compared to the 

conventional estimation model in terms of estimating 

average velocity and density. The velocity and density 

estimation errors of the conventional method where the 

sensed data is applied directly are denoted as Normal_V and 

Normal_D while those corresponding errors of the Cir 

model are denoted as GA_Circuit_V and GA_Circuit_D, 

respectively. As shown, the proposed Cir model is 

prominent. Especially, when the penetration rate is relevant, 

namely larger than 25%, the estimation error in both 

velocity and density estimation of the proposed Cir model 

is tiny as lower than 5%. 

 

 

Figure 9.  Effectiveness of the GA-based velocity-density inference 

cricuit (Cir)  

Figure 10.  Effectiveness of the ANN-based prediction model (Ann) v.s. 

that of the GA-based velocity-denisty inference circuit (Cir) 

Figure 10 shows the effectiveness of the ANN-based 
prediction method (Ann) compared to that of the Cir model 
regarding different penetration rates. Here, the errors of both 
the velocity and density, denoted as ANN_V and ANN_D, 
respectively, of the Ann method are around 27% regardless 
of penetration rate. The accuracy of the Ann model is 
completely satisfies this research purpose when the 

penetration rate is unacceptably low, namely lower than the 
critical one (i.e. around 25%). However, when the 
penetration rate is relevant, namely larger than the critical 
one, the Cir approach (denoted as GA_Circuit_V and 
GA_Circuit_D for the velocity and density estimation errors, 
respectively) is dominant. 

7.3  Effectiveness of the Traffic State Estimation 

Selection Method 

This section evaluates the proposed method on selecting 
the appropriate traffic state estimation model under the 
condition of uncertain penetration rate. 

Figure 11 shows the effectiveness of the appropriate 
selection method proposed in section 5 regarding different 
decision thresholds (i.e. the values of θ - please refer to 
equation (16)). The figure reveals that the lower threshold 
supports for the selection method in the cases of low 
penetration rates, and vice versa. For example, with the 
threshold of 30% (θ=30%), the selection accuracy is almost 
higher than 80% if the penetration rate is low (≤20%). In 
contrast, the accuracy decreases drastically (≤40%) when the 
penetration rate is relevant (≥25%). If a completely high 
threshold, namely θ=50%, is selected, the selection accuracy 
is high when the penetration rate is relevant while the 
accuracy is drastically decreased when the penetration rate is 
low. Figure 11, also shows that the model works well (with 
high accuracy) in both the high or low penetration rate when 
the threshold is set to 40%. In this case, the accuracy is quite 
high (around 80% or 90%) in the cases of relevant 
penetration rates, while accuracy in the cases of low 
penetration rates is still high enough (around 60%). 

 

 

 

 

 

 

 

 

Figure 11.  Effectiveness of the proposed method for selecting the “Right” 

traffic state estimation model  

        Table 1 summarizes the model selection effectiveness 
with regards to different thresholds. This table show the 
probability of “right” selection in high penetration rate 
(>25%), low penetration rate (≤25%) and the summary of 
the selection accuracy in all the cases. As shown, for a low 
threshold (θ=30%), the selection accuracy is high (76%) in 
cases of low penetration rates, but the accuracy declines 
drastically (26.67%) in cases of high penetration rate. The 
overall accuracy in this case is 44.29%. In contrast, for a 
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high penetration rate (θ=50%), the relation between 
penetration rate and the selection accuracy is in the converse 
way. The model is optimal with the threshold of 40% where 
it works well for both the low and high accuracy resulting in 
a high selection accuracy of 76.43%. Therefore, if the 
selection method is applied in real world applications, the 
selection threshold should be 40%. 

Table 1. The average accuracy of the selection method 

8 CONCLUSION AND FUTURE WORK  

Novel solutions to essential issues of low and uncertain 
penetration rate in mobile phone based applications, 
especially in the M-TES, were proposed. More concretely, a 
unique GA-based velocity-density inference circuit (Cir) 
and a notable ANN-based prediction model (Ann) were 
proposed. The effectiveness of the proposed solutions was 
thoroughly evaluated using large amount of simulation data. 
The evaluation results show that the proposed approaches 
are effective and robust. The GA-based mechanism 
improves the estimation accuracy significantly even in cases 
of low penetration rates improving the scalability of the M-
TES.  The ANN-based prediction model makes the M-TES 
be viable even if the penetration rate becomes unacceptably 
low or even unknown. 

  In practice, the actual penetration rate cannot be 

accurately measured at the estimation time, hence it is 

challenging to select the “right” estimation model among 

the GA-based and the ANN-based prediction approaches. 

This research proposed practical selection methods for 

selecting appropriate traffic state estimation model. The 

proposed selection model reveals its robustness and 

feasibility since it help to select the “right” traffic state 

estimation model automatically even the “actual” 

penetration rate is unknown.  

This proposed selection method, however, still requires 

information about the estimated values, namely Vann and 

Vcir, which may decline the computational performance. 

Therefore, finding an appropriate approach by which 

appropriate estimation method can be selected correctly 

without any requirement of prior estimations is an 

interesting research direction. In addition, the effectiveness 

as well as the robustness of the proposed solutions should 

be confirmed by more real-field experiments before being 

applied to real world applications. 
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Penetration 

rate  

Selection thresholds and accuracy (%) 

θ =30% θ =40% θ =50% 

All the case 44.29% 76.43% 65% 

<=25% 76.00% 64.00% 33.00% 

>25% 26.67% 83.33% 82.78% 
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