
Customizable Context Detection for ECA rule-based Context-aware Applications

T. Nakagawa, C. Doi, K. Ohta, and H. Inamura

Research Laboratories, NTT DOCOMO, Japan
3-6, Hikari-no-oka, Yokosuka, Kanagawa, 239-8536 Japan, nakagawato@nttdocomo.co.jp

ABSTRACT

Since user context detection plays a key role in realizing
context-aware applications, developers must be able to
create service-specific context detection algorithms easily.
To this end, we propose an Event-Condition-Action (ECA)
rule specification and rule engine specialized for
customizable user context detection. The application
developer of a context-aware application can utilize our
ECA rule to define an algorithm to process terminal log data
and output service-specific user context.

The proposed ECA rule specification satisfies the func-
tional requirements in that it covers W4H, which are the five
semantic dimensions for context description, and that it pro-
vides methods to handle various data types including sensor
data and terminal logs of smartphone middleware. In addi-
tion, composite contexts, which are derived from several
context sources, are also supported. An evaluation of a pro-
totype implemented on an Android-based smartphone
yielded a maximum response time of 300 ms, and CPU load
of less than 5 %.

Keywords: ECA rule, Context-aware application, Logging
function, User context detection, Customization

1 INTRODUCTION

Context-aware services are being researched to realize a
convenient and comfortable life by providing appropriate
services or applications suitable to our ever-changing situa-
tion [1]. A wide range of context-aware applications have
been proposed so far, including context-aware tour guides,
smart rooms, museum applications, mobile-learning, health-
care, and assisted living applications [2][3][4].

Recent smartphones are paving the way to these context-
aware applications by providing rich information streams
gathered from various sensors and open middleware. For ex-
ample, research is underway on tackling the problem of
capturing user context from sensor-enabled smartphones
[5][6][7]. In addition, user context can also be acquired from
operation logs of system events issued by the open middle-
ware of smartphones [8]. Thus, smartphones provide the
ideal platform for collecting abundant information from
which user context can be acquired.

We adopt an ECA rule-based approach to realize context-
aware applications, because previous research has revealed
that it is an effective way of developing context-aware ap-
plications [1]. ECA rules are composed of event, condition,

and action. When an ECA rule is executed in an ECA rule
engine, the pre-defined action is automatically performed in
response to events if the stated conditions hold [3][9][10].
The key benefit of the ECA rule approach is that it makes it
easy to describe human problem-solving knowledge as pro-
cedural tasks [1]

However, existing context-aware systems utilize only
gross user context such as time and location, or domain-
specific user context generated by dedicated systems. In
other words, the existing approach fails to support the appli-
cation developer in creating original context detection
algorithms.

We consider fine-grained user context defined on a per-
application basis can lead to value-added context-aware ap-
plications with more user satisfaction. Let’s take the context-
aware tour guide, for instance. In addition to typical user
context of location data, developers want to utilize addi-
tional terminal data to acquire more detailed user context.
One developer would prefer to provide a function to distrib-
ute tour information based on the user’s plan for the day,
which is registered in the scheduler application on the
smartphone. In this case, user context is acquired as a com-
bination of the current location and the user’s probable
location in the future. Another developer might utilize pe-
dometer data to decide the best opportunity for presenting
recommended resting spots. In this case, user context is ac-
quired by combining current location and user’s physical
status such as “being tired after long walk”. In this way, the
user context that the developer wants to utilize depends on
the requirement of the application.

The goal of our research is to realize a platform on which
developers can easily create original context detection algo-
rithms to realize advance context-aware applications.
Though various data is available for detecting user context
on state-of-the-art smartphones, writing the source code in C
or Java for collecting system status or sensory data is a cum-
bersome process. By realizing a platform that eliminates the
need for this, application developers can focus on the main
task of defining the appropriate context required for the ap-
plication.

The primary contribution of this paper is a powerful ECA
rule specification that allows developers to define user con-
text detection methods on a per-application basis. The
proposed ECA rule specification satisfies three functional
requirements. First, it covers W4H, which are the five se-
mantic dimensions for context description. Second, it
provides methods to handle various data types gathered for a
certain time span. Third, it allows composite contexts, which
are derived from several context sources.

ICMU 2012 Copyright © 2012 by Information Processing Society of Japan.
All rights reserved. 98

An evaluation of a prototype implemented on an Android
2.3 smartphone shows that the platform satisfies our per-
formance requirements. The resource consumption and
response time for context detection are shown to be accept-
able for the resource-limited mobile environment.

2 RELATED WORK

We adopt the ECA rule-based approach because it is gen-
erally suitable for describing context-aware applications. To
check if the rule-based approach is a suitable option, a list of
questions is provided in [1]. For example, ECA rules are
suitable for replicating human problem-solving knowledge
because they provide a framework for representing proce-
dural knowledge. Another benefit of ECA rules is that they
make it easy to accommodate incremental changes in
knowledge, because they can be easily customized by
changing the parameters, attributes, and elements.

However, existing ECA rule studies on context-aware ap-
plications have not focused on creating original context
detection algorithms, because they assumed that the events
are given. For example, events such as UserArrivalEvent or
RoomStatusChangeEvent are provided from outside of the
rule engine in [2]. In [11], RDF is utilized to describe rules
to prioritize and classify environmental services that are
suitable for user's context. This approach can't be applied to
describe context detection by log analysis.

Other intriguing studies address the challenge of acquiring
user context from raw sensor data [5][6][7]. In LifeMap [5],
smartphone-embedded sensors are utilized to extract user
context, both indoors and outdoors. In [6], smartphones with
built-in accelerometers are utilized to recognize user’s activ-
ity such as walking, running, and walking upstairs and
downstairs. In [7], road crossing is recognized via the smart-
phone’s accelerometer. However, it remains true that the
existing ECA rule-based approach lacks flexibility to de-
scribe user context on a per-application basis.

The contribution of this paper is to allow a developer to
define an algorithm to generate primary context as desired.
This is realized by providing event and condition tags with
functions to analyze log data, and also providing action tags
with functions to issue primary context. In [12], the complex
process of collecting and analyzing sensor data is hidden
from the developer so that context-aware applications can be
easily created. In addition, high-level context can be handled
by combining different widgets to make composite widgets.
Though our approach offers the same features, it provides
more powerful customization to describe original context
detection algorithms. In [13], the preprocessing phase builds
measurement data arrays that contain a certain number of
samples and calculates generic features for each time inter-
val. The proposed method allows such preprocessing to be
customized by ECA rules.

We realize an ECA rule specification for service-specific
user context detection; it allows the use of various data as-

sets. Thus, the proposed system allows developers to utilize
sensor data and system events from smartphone middleware
to define original user context. As indicated in MobileSens
[8], user context can be captured more precisely by taking
advantage of the diverse supplementary data available from
smartphone middleware. Studies such as MyExperience [14]
and LiveLab [15] tackle the challenge by collecting various
terminal logs to acquire user context. Those studies support
our idea that abundant data from sensors and open middle-
ware are effective for user context detection.

Figure 1: User context detection by ECA rule

The proposed ECA rule specification must provide flexi-
bility in describing arbitrary user contexts regardless of the
domain. From this view point, it is beneficial to refer to pre-
vious research on the semantics of context [16], and on
composite context [17][18][19]. W4H [16] represents five
semantic dimensions of identity (who), location (where), time
(when), activity (what) and device profiles (how). Several
studies have delved into the composite context, which is de-
rived from several context sources [17][18][19]. In [17],
complicated context is formed from unitary contexts such as
permissible time periods, distance to the site, budget, etc. In
[19], it is shown that the process-based approach is effective
for creating composite context in a flowchart-like manner.
We consider that both context semantics and composite con-
text are essential elements in realizing domain-independent
user context detection.

3 USER CONTEXT DETECTION

In this paper, user context detection means the process
that user’s situation is judged from various information such
as sensor data, user’s location, terminal data, and operation
log (Figure 1). We introduce a mechanism that user context
detection is conducted by the ECA rule, which is executed
on an ECA rule engine on a smartphone.

Once a developer creates a context-aware application, the
application is described using ECA rules. The event and
condition part is the mechanism that captures user context
by leveraging various terminal logs on the smartphone.

ICMU 2012 Copyright © 2012 by Information Processing Society of Japan.
All rights reserved. 99

At first, an ECA rule engine is downloaded before utiliz-
ing context-aware applications, and executed as a resident
program. Context-aware applications are downloaded on
demand and executed on the ECA rule engine.

4 PROPOSED METHOD

4.1 Requirements

The following functional requirements must be satisfied
to provide flexibility in defining original context detection.
From the top-down viewpoint, the ECA rule specification
should cover all conceivable user contexts. On the other
hand, from the bottom-up viewpoint, various kinds of data
gathered on the smartphone should be fully leveraged by
ECA rule-based applications.

・Functional Requirements
1. Support for developing a context detection algorithm

that covers the five semantic dimensions of W4H
2. Provision of a versatile method to process diverse

types of log data gathered for different time spans
3. Support for processing composite contexts

Requirement 1 means that the ECA rule tags need to

cover W4H, which are the five semantic dimensions of iden-
tity (who), location (where), time (when), activity (what) and
devices profiles (how) [16]. Requirement 2 means that a
wide range of log data must be processed properly including
sensor data, communication logs, location data, and system
logs. In addition, logs generated either continuously or in-
termittently, must be utilized for deep observation of user
context. Requirement 3 is derived from previous research
[17][18][19] which shows that the user context in the real
world is often composed of several sub dimensions.

・Performance Requirements
4. CPU loads under 5% for rule engine execution
5. RAM consumption under 5MB
6. Response time of 300 ms for judging user context

Requirements 4 and 5 mean that even if various terminal

logs are utilized by the application, the data gathering proc-
ess should neither hinder other applications nor incur
extreme resource consumption. Requirement 6 means that
moderate response time must be assured for context-aware
applications. The performance target of 300 ms is rather
short compared to the evaluation results of previous studies
on context-aware applications [9].

4.2 System Architecture

The proposed system is composed of a logging function, a
log database, and an ECA rule engine (Figure 2). The log-
ging function collects the terminal log data required for

context detection and records the data to the log database.
The rule engine executes the context-aware application us-
ing the log data read from the log DB.

Figure 2: System configuration of the platform

The logging function collects log data from the smart-
phone’s sensors and its middleware. The sensors provide
user location, accelerometer data, and light level data, etc.
The smartphone middleware provides terminal setting, ter-
minal status and user operation. For instance, vibration mode
setting, remaining battery level, backlight status, and appli-
cations utilized can be acquired from the middleware.

In order to protect the user’s privacy, and also to assure
rapid application response, the ECA rule engine is located
on the smartphone. Because terminal logs are full of private
data such as user location and operation logs, the data is
processed only in the smartphone.

Table 1: Event and condition tags for context detection

4.3 Support for W4H in Context Detection

To satisfy requirement 1, each aspect of W4H is covered by
the proposed ECA rule specification (Table 1). The context of
who permits communication status analysis. For example, a
context-aware application can grasp the situation that a phone
call from a person has not been returned. The context-aware
application can remind the user to call back and assist smooth
communication.

As the ECA rule tag for describing who, OCCUR tag is
utilized to detect log generation concerning specific people.
For example, the caller in the incoming call log can be de-
tected by the following description, where log_ID_for

ICMU 2012 Copyright © 2012 by Information Processing Society of Japan.
All rights reserved. 100

incoming_call means the log kind ID number that indicates
an incoming phone call. Parameter “xxx-xxxx-xxxx” means
the target phone number, which corresponds to who, in this
log kind. As the terminal log is accompanied by several pa-
rameters, the parameter to be evaluated is specified by the
POSITION attribute in the VALUE element. In this example,
the phone number is the first parameter of the incoming
phone call log.

<occur kind=”log_ID_for_incoming_call”>

<value position=”1”>xxx-xxxx-xxxx</value>
</occur>

The dimensions of when and where are covered by TIME
tag and CENTER tag, respectively. TIME tag supports re-
petitive events such as hourly or daily basis, in addition to
the absolute designation of time. In the following example,
the first line shows the absolute designation of midnight on
23rd May 2012, and the second line shows the repetitive des-
ignation of every hour. CENTER tag provides a function to
detect user location, by specifying the center of the location
represented by latitude and longitude, the positioning tech-
nology, and the radius of the target area. In the following
example, the action is triggered when the user is within 1000
m of Naha city center.

<time><eq type=”datetime”>2012-05-23T00:00:00</eq>
<time><eq intervalType=”hour”>00:00</eq></time>

<center lat=”26.21662” lon=”127.688069” type=”gps”>

<le type=”numerical”>1000</le>
</center>

The dimensions of what and how are covered by OCCUR

tag and the remaining tags of RANGE, MATCH, SUM, and
SUB, which also provide functions to satisfy requirement 2,
see details in the next section.

4.4 Handling Diversity and Time Frame

To satisfy requirement 2, we assigned RANGE tag and
MATCH tag to handle the different types of log data uni-
formly. RANGE tag is utilized to evaluate if the numerical
data, such as sensor data or date data, enters into a specified
range. MATCH tag is utilized to detect if specified string is
included in the log. In the following examples, RANGE tag
works to detect if a plan is scheduled in the specified period,
while MATCH tag works to check if a plan of the specified
title of “dinner” is scheduled. As MATCH tag supports
string matching by the regular expressions of Perl, it pro-
vides powerful analysis of system logs and application logs.

<range kind=”scheduler” position=”2”>

<ge type=”datetime”>2012-5-23T18:00:00</ge>
<le type=”datetime”>2012-5-23T19:00:00</le>

</range>

<match kind=”scheduler” position=”1”>dinner
</match>

Figure 3: Evaluation of SUM tag and SUB tag

In addition, SUM tag and SUB tag are introduced to de-
tect how often a certain behavior is performed by the user, or
how long the user is dedicated to a certain activity, which is
also claimed by requirement 2 (Figure 3).

SUM tag is evaluated by counting the total instances of
terminal log generation in specified time span. In Figure 3-a,
log generation instances from T1 to T2 are shown by sym-
bols L1 to Ln. The evaluation result of SUM tag is provided
by comparing the instance total, which is n, with the speci-
fied threshold. In the following example, the result is true if
the number of steps from the pedometer data in the latest
one hour is greater than or equal to 3000 steps.

<sum kind=”pedometer” ge=”3000”>

<trackback type=”hour”>1</trackback>
</sum>

SUB tag is utilized to measure the total of each log gen-
eration interval specified by two kinds of different terminal
logs that are generated alternately. In Figure 3-b, the start
log and end log generation is shown by Sk and Ek. The
evaluation result of SUB tag is provided by comparing the
total of each duration tk, which is headed by Sk and termi-
nated by Ek. In the following example, the result is true if
browser usage of the day exceeds 60 minutes.

<sub from=“app_foreground” to=“app_background”
ge=”60” type=”minute”>

<eq type=”date”>today</eq>
<gt type=”time”>00:00:00</gt>
<value position=”2”>browser</value>

</sub>

4.5 Support for Composite Contexts

To satisfy requirement 3, we intoduce user-defined events
as a kind of terminal log that can be freely defined by the
developer.

ICMU 2012 Copyright © 2012 by Information Processing Society of Japan.
All rights reserved. 101

Table 2: Action tags

Actions conducted after user context detection are defined

by using action tags such as LOGWRITE, DIALOG, and
COORDINATE (Table 2).

LOGWRITE tag is utilized to issue user-defined events
recorded in the log DB for future use by event and condition
tags. When LOGWRITE is executed on the rule engine, a
terminal log called user defined event is recorded with the
parameters defined in the EVENTVALUE tag. As the name
“user-defined” indicates, the developer of the application
can freely define multiple parameters.

<logwrite>

<userevent>
<eventvalue position=”1”>param1</eventvalue>
<eventvalue position=”2”>param2</eventvalue>

</userevent>
</logwrite>

The user-defined event can be handled by the event and

condition tags in Table 1, as just another kind of terminal log.
By combining event and condition tags and LOGWRITE tag,
the developer can define an original method to detect user con-
text from the terminal log, and record the detected user context
in the log DB.

By using user-defined events, it is possible to detect com-
posite contexts and thus create context-aware applications
handling rich user context. To better understand how com-
posite context can be detected, Figure 4-a shows the
topology of the ECA rules. As the action can be executed
after detection of several user contexts, ECA rules can be
linked in a JOIN-type topology.

If several actions are executed after detection of a single
context, the context detection and subsequent actions form a
FORK-type topology (Figure 4-b). Both of these topologies
are utilized in the evaluation of response time in Section 5.3.
DIALOG tag provides a simple function to show a dialog

with predefined message and buttons.
Finally, COORDINATE tag activates other applications by

the Intent mechanism of Android, which allows late runtime
binding between different applications1. This function al-
lows a context-aware application to trigger any other
application to be executed.

1 Intent | Android Developers
http://developer.android.com/reference/android/content/Intent.

4.6 Application and Customization Example

As a simple example, the XML source code of a context-
aware tour guide is shown in Figure 5.

Figure 4: Evaluated topology of the ECA rules

Figure 5: An example of context-aware tour guide

In this application, the user context of “long walk” is de-

tected from pedometer data, and resting spots are shown by
the web site automatically.
The ECA rule is composed of two rules, which define the

detection of “long walk” and notification of the context. The
first rule is fired when the total number of steps per hour ex-
ceeds 3000 steps. As a result, a user-defined event “3000
steps” is issued to record that context. The second rule is
fired in response to the generation of the user-defined event
of “3000 steps”, and implicit Intent is issued to show the
specific web site defined in the action tag.
The key feature of the proposed system is that the applica-

tion is easy to develop by changing several configuration

ICMU 2012 Copyright © 2012 by Information Processing Society of Japan.
All rights reserved. 102

Figure 6: Screenshot of application development console

factors as provided by ECA rules. Below is a list of customi-
zation items for this scenario.

・Parameters

The goal of the number of steps may well vary. A devel-
oper might change the first parameter of pedometer log data
from 3000 steps to 1500 steps.

・Time span

Instead of past 60 minutes, you can set longer or shorter
time spans in the TRACKBACK element.

・Additional conditions

You can add other kinds of terminal log such as scheduler
data to detect user context. For example, resting spots are
shown only when the user doesn’t plan to have dinner soon.

Also, user location can be considered to refine the tour in-
formation, by adding CENTER tag in the condition.

In the proposed method, a developer can define original

context information necessary for context-aware applica-
tions with the minimum of customization via web browser
console on a smartphone’s or PC’s browser (Figure 6).
Hence, user context can be subdivided on the basis of the
developer's original viewpoint. In other words, the developer
can create context-aware applications more flexibly than
previous development environments.
The configuration changes described above can be imple-

mented by just web browser selections, and changing the
ECA tags and parameters as desired. The customization can
be completed even without writing an XML file of the ECA
rule, because the ECA rule is automatically created accord-
ing to the configuration input from the web console.

For example, if location context such as home or office is
required by a context-aware application, the developer util-
izes the web-based interface to input necessary data. The
center and radius of the target are designated on the map, to
specify the target’s location and size. When the user of the
application enters into or leaves from the target location,
original context information such as HOME-IN or HOME-
OUT is issued by executing an action defined by the devel-
oper. The developer is released from cumbersome
procedures such as checking latitude and longitude data, and
an ECA rule is automatically generated.
As this development console doesn't require programming

skill, we assume it can be utilized by not only professional
developers but also by end users.

5 EVALUATION

In this section, we evaluate the proposed system and con-
firm if the proposed ECA rule engine described in Section 4
satisfies performance requirements 4 through 6. The pro-
posed system was implemented on an Android-based
smartphone, whose specification is shown in Table 2.

The evaluation is conducted from the viewpoints of re-
source consumption, response time for single rule execution,

Table 2: Specification of the target smartphone

and response time for FORK and JOIN type topologies. The
resource consumption is measured in Section 5.1 to confirm
if requirements 4 and 5 are satisfied when the ECA rule is
processed in the rule engine. The response time is measured

ICMU 2012 Copyright © 2012 by Information Processing Society of Japan.
All rights reserved. 103

in Section 5.2 to confirm if requirement 6 is satisfied when
time consuming tags are evaluated. In addition, as ECA
rules that form complex topologies can increase the response
time, FORK-type and JOIN-type topologies are evaluated in
Section 5.3 to confirm if requirement 6 is satisfied. All the
results in these sections are the averages of five trials.

5.1 Resource Consumption

As a basic performance evaluation, the resource consump-
tion was measured for different phases of rule engine
execution under normal status, event evaluation, and action
execution. OCCUR tag and LOGWRITE tag are utilized as
the event and action, because they are the most common tags.
Normal status means the phase before event evaluation; the
rule engine is idle. By comparing the result of the normal
phase with its counterpart under event evaluation and action
execution, the impact of the rule engine can be determined.

As shown in Figure 7, CPU load for both event evaluation
and action execution was less than 5%. In particular, the
CPU load for event evaluation was almost the same as under
normal status. This means that OCCUR tag evaluation gen-
erates negligible CPU load, and the rule engine doesn’t
negatively impact system operation or other applications.

The RAM consumption was about 300 KB throughout all
phases of rule engine execution. We consider this result to
be sufficiently lightweight for a smartphone with 512 MB of
RAM. It is not considered likely that RAM consumption will
be a problem even if the evaluation scenario is complicated.

5.2 Response Time

The response time of the rule engine deteriorates when the
event is evaluated against certain time span of terminal log.
Because SUM tag and SUB tag correspond to this type of
ECA tag, we evaluated their response times.

The processing times of SUM tag for target time spans
from 15 to 120 minutes show that the processing time is less
than 100 ms regardless of the time span (Figure 8).

The equivalent processing time of SUB tag is less than 50
ms (Figure 9). Though the processing time deteriorates with
time span duration, it still satisfies requirement 6.

5.3 Response Time of Various Topologies

We evaluated the impact of context processing pattern on
response time. Several ECA rules with JOIN type and
FORK type topologies were assessed.

The processing time of the JOIN-type topology showed
about the same result for different numbers of executed
events; all results were under 100 ms (Figure 10).

The processing time of FORK-type topology increases
with the number of executed actions. With four and eight
actions, the processing time of event evaluation was 79 ms
and 305 ms, respectively (Figure 11).

Figure 7: CPU load of rule engine execution

Figure 8: Processing time of SUM tag

Figure 9: Processing time of SUB tag

Figure 10: Processing time of JOIN-type topology

From these results, the processing time of the JOIN-type

topology fully complies with requirement 6. The FORK-type
topology is also practical since the number of actions trig

ICMU 2012 Copyright © 2012 by Information Processing Society of Japan.
All rights reserved. 104

Figure 11: Processing time of FORK-type topology

gered by a certain user context is considered to be around
three at most.

6 CONCLUSION

We have proposed an application execution environment
that allows developers of context aware applications to util-
ize various terminal logs, so that user context can be flexibly
leveraged. We tackled the challenge of allowing the applica-
tion developers to easily create algorithms employing user
context detection. To this end, we proposed an ECA rule
specification that satisfies the functional requirements of
covering the five semantic dimensions, W4H, handling vari-
ous data collected from sensor devices and smartphone
middleware, and supporting composite contexts.

Extensive evaluations of a prototype on a commercial
smartphone confirmed that rules can be processed under 100
ms for SUM tag and SUB tag for single ECA rules, and un-
der 305 ms for more complex FORK-type and JOIN-type
topologies. Overall, the evaluation results satisfied the re-
quirements set. Future work includes realizing a user-
friendly interface to support the development and customiza-
tion of context-aware applications.

REFERENCES

[1] P. Moore, B. Hu, and M. Jackson, Rule Strategies for
Intelligent Context-Aware Systems, IEEE CISIS
(2011).

[2] D. Kulkarni and A. Tripathi, A Framework for Pro-
gramming Robust Context-Aware Applications, IEEE
Trans. Software engineering, Vol.36, No.2, pp.184-197
(2010).

[3] P. Moore, M. Jackson, and B. Hu, Constraint Satisfac-
tion in Intelligent Context-Aware Systems, IEEE CISIS
(2010).

[4] G. Pallapa, N. Roy, and S. Das, Precision: Privacy En-
hanced Context-Aware Information Fusion in
Ubiquitous Healthcare, IEEE SEPCASE, (2007).

[5] Y. Chon and H. Cha, LifeMap: A Smartphone-Based
Context Provider for Location-Based Services, IEEE
Pervasive Computing, (2011).

[6]A. M. Khan, Y. K. Lee, S. Y. Lee, and T. S. Kim, Hu-
man Activitiy Recognition via An Accelerometer-
Enabled-Smartphone Using Kernel Discriminant
Analysis, IEEE FutureTech, (2010).

[7]A. Bujari, B. Licar, and C. E. Palazzi, Road Crossing
Recognition through Smartphone’s Accelerometer,
IFIP Wireless Days, (2011).

[8] R. Guo, T. Zhu, Y. Wang, and X. Xu, MobileSens: A
Framework of Behavior Logger on Android Mobile
Device, IEEE ICPCA, (2011).

[9] P. D. Costa, J. P. Almeida, L. F. Pires, and M. Sinderen,
Evaluation of a Rule-Based Approach for Context-
Aware Services, IEEE GLOBECOM (2008).

[10]T. Hu, and B.Li, Research on the Mechanism of Tour-
ism Information Change Management Based on ECA
Rules, IEEE CSE, (2010).

[11] Jari Forstadius, Ora Lassila, and Tapio Seppanen,
RDF-based Model for Context-aware Reasoning in
Rich Service Environment, IEEE PerCom Workshops,
(2005).

 [12] Daniel Salber, Anind K. Dey and Gregory D. Abowd,
The Context Toolkit: Aiding the Development of Con-
text-Enabled Applications, ACM CHI, (1999).

[13] Panu Korpipaa, Jani Mantyjarvi, Juha Kela, Heikki
Keranen, and Esko-Juhani Malm, Managing Context
Information in Mobile Devices, IEEE Pervasive Com-
puting, (2003).

[14] J. Froehlich, M. Y. Chen, S. Consolvo, B. Harrison,
and J. A. Landay, MyExperience: A System for In situ
Tracing and Capturing of User Feedback on Mobile
Phones, ACM 5th international conference on Mobile
systems, (2007).

[15] C. Shepard, A. Rahmati, C. Tossell, L. Zhong, P. Kor-
tum, LiveLab: Measuring Wireless Networks and
Smartphone Users in the Field, ACM SIGMETRICS
Performance Evaluation Review, (2011).

[16] R. F. B. Neto and M. G. C. Pimentel, Toward a Do-
main-Independent Semantic Model for Context-Aware
Computing, Third Latin American Web Congress,
(2005).

[17] W. Na, S. Cho, E. Kim, and Y. Choi, Event Detection
in Composite Context Aware-Service, IEEE ICUFN,
(2011).

[18] S. Kim, E. Kim, and Y. Choi, Composite Context In-
formation Design and Model Approach for Adaptive
Service Detection, IEEE 13th ICACT, (2011).

[19] E. Gultawatvichai and T. Senivongse, A Development
of Process-Based Composite Contexts for Mobile De-
vice Platforms Based on Model Driven Architecture,
IEEE JCSSE, (2011).

ICMU 2012 Copyright © 2012 by Information Processing Society of Japan.
All rights reserved. 105

