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ABSTRACT 
This paper studies the performance of pipeline network 

coding for multicast stream distribution in high loss rate 
MANET scenarios. Most of the previous network coding 
implementations have been based on batch network coding, 
where all blocks in the same batch are mixed together. Batch 
coding requires that the entire batch is received before 
decoding at destination. Thus, it introduces high decoding 
delays that impact the stream reception quality. Instead of 
waiting for the entire batch (i.e., generation), pipeline network 
coding encodes/decodes packets progressively. Consequently, 
pipeline network coding yields several benefits: (1) reduced 
decoding delay, (2) further improved throughput, (3) 
transparency to higher layers (UDP, TCP, or other 
applications), (4) no special hardware support and (5) easier 
implementation. We show performance gain of pipeline 
coding compared to batch coding via extensive simulation 
experiments.  
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1  INTRODUCTION 
Due to the nature of wireless communications, MANETs are 

vulnerable to channel errors, interference and jamming. There 
are two well known approaches for effective error recovery; 
Forward Error Correction [3] and ARQ. Since the targeted 
application here is real time multicast streaming, the ARQ 
scheme is not appropriate. In order to efficiently control losses, 
recent research in this area has exploited FEC-based coding 
schemes, such as erasure coding [4] and network coding [5-7]. 

The word “erasures” at the network layer means “missing 
packets in a stream” [4] and erasure coding is classified as 
FEC coding for binary erasure channels since a source 
achieves error correction by injecting redundant data. A 
source generates n packets from k original ones. The original 
data can be reconstructed from a subset of n packets. The most 
common approach of erasure coding proposed in [4]1 and in 
this paper we define a new term “batch erasure coding” that 
generates encoded packets only from the same batch. As for 
network coding, we do a similar thing. A stream of packets is 
split into k packets called “generation” [7] and the source 
produces n coded packets for each generation using random 
                                                           
1 There are a lot of other approaches for both erasure coding and network 

coding. In this paper, we narrow down the definition to the specific coding 
schemes as described in our paper. Other approaches not used in this paper 
are given as references only. 

linear coding. We define r=n/k as the “coding redundancy” in 
this paper. At destinations, any subset of k linearly 
independent coded packets is sufficient to reconstruct the 
original generation. In other words, n-k losses are allowed in a 
group of n coded packets. The difference between Erasure 
coding and network coding is that in the former the coding is 
done only at the source while in the latter the coding is done 
also at intermediate nodes. In fact, Erasure coding can be 
viewed as a subset of network coding.  

The above erasure coding scheme is called “pre-defined rate 
coding” since coding redundancy is decided before 
transmission. Another form of erasure coding is called 
“rateless coding,” which can generate infinite encoded packets. 
Namely, there is feedback from destination to source and the 
source will adaptively adjust the redundancy depending on 
reception quality at destination etc. However, end to end 
feedback can be slow and is not practical in 
multicast/broadcast because of feedback control message 
“explosion” Fountain Codes [17] and Raptor Codes [18] are 
this type of coding schemes. In this paper, we only consider 
pre-defined rate coding. In this respect, it should be noted that 
network coding allows dynamic adjustment of redundancy 
WITHOUT expensive end to end feedback since it can just 
rely on downstream neighbor feedback to adjust 
retransmissions. 

In disruptive networking environments, end-to-end erasure 
coding is not sufficient to achieve reliable packet transmission 
[8]. Thus, researchers have applied network coding to such 
challenged environments, where the broadcast nature of 
wireless medium renders network coding particularly effective 
[1]. Unlike source coding, as mentioned earlier all nodes in 
the network participate in the encoding process. In this paper, 
we use “batch network coding” to refer to a network coding 
scheme where source and relay nodes encode data packets in 
the same generation using random linear coding. Batch 
network coding is one of the most common approaches of 
network coding [1, 6-7, 9-11]1. 

However, there are two critical drawbacks in both batch 
erasure coding and batch network coding. First of all, they 
introduce an encoding and decoding delay that proportionally 
increases with generation size. Thus the quality of real-time 
streaming degrades due to delay and jitter. Furthermore, 
because of the generation based coding, a generation is 
decodable only once enough linearly independent (i.e., 
innovative) packets arrive; otherwise, the entire generation is 
discarded. In other words, throughput may significantly 



degrade due to frequent generation discarding in a lossy 
network. 

To solve these batch coding problems, we propose a coding 
scheme, “pipeline coding,” where both encoding and decoding 
can proceed progressively. Instead of waiting for all packets in 
a generation to arrive, sources start encoding and sending 
coded packets whenever a new data packet arrives. At the 
destination, data packets can also be reconstructed 
“progressively,” i.e., incrementally. Consequently, pipeline 
coding achieves (1) a lower coding delay, (2) a higher 
throughput, (3) transparency to higher layers (UDP, TCP, or 
other applications), and (4) no special hardware requirement. 

In this paper we evaluate the impact of the pipeline concept 
on network coding. A future paper will evaluate pipelining for 
erasure coding. The rest of the paper is organized as follows. 
Section 2 depicts the detail of the proposed coding scheme. 
Simulation results and testbed experiment results are 
presented in Section 3. Section 4 concludes the paper. 

2  PIPELINE CODING 
This section first gives the mathematical definition of batch 

coding; next the mathematical definition of pipeline coding is 
presented; and the proposed encoding and decoding 
procedures are described lastly. Throughout this paper, the 
term “erasure coding” refers to source-side only network 
coding, and “network coding” refers to the case where relays 
participate in encoding along with the source. Table 1 below 
provides a summary of the terminology we adopt in this paper. 

2.1Batch Coding 
As defined previously, in this paper, batch coding refers to 

both batch erasure coding and batch network coding. Suppose 
at the source, an application generates a series of equal-sized 
packets p1, p2, p3,…,. Let k be the number of packets in a 
single generation. A coded packet c in ith generation is then 
defined as: 
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where ke  is a particular element in a particular finite Galois 
field F , and i k×  is the total number of packets transmitted so 
far in the file, before the ith generation. Throughout this article, 
we use lowercase boldface letters to denote vectors, frames, or 
packets; uppercase letters to denote matrices; and italics to 
denote variables or fields in the packet header. Every 
arithmetic operation is over F  so that data packets pi and 
coded packets c are also regarded as vectors over F . Let r 
denote the coding redundancy, where r≥1. For each generation, 
the source will produce k r× coded packets. At destination 
side, after receiving k linearly independent packets, the 
destination can then reconstruct the original content by 
solving the following linear system of equations as given in eq. 
(2) using Gaussian Elimination. 
 

Table 1. Definitions of Terms Used in This Paper 
Term Definition 

Erasure Coding Source-side only coding. 
Network Coding Source-side and relay coding. 

Batch Coding Every coded packet will encode all 
data packets within the same 
generation. Coding and decoding 
begins only when the generation 
rank is “full” 

Pipeline Coding Coded packets will be generated 
upon every new data packet arriving. 
Destinations decode the data packets 
progressively if possible. 

Generation A set of packets that are encoded or 
decoded together as a unit. 
 

Coding Vector 
(Encoding 

Vector) 

A vector of coefficients that reflect 
the linear combination of data 
packets. 

Rank 
(Degree of 
Freedom) 

Number of linearly independent 
combinations of data packets. 

Innovative 
Packet 

A packet that increases the rank. 

Coding 
Redundancy 

Number of coded packets sent per 
generation divided by generation 
size. 

Delay The time difference between packet 
reception by destination application 
and transmission from  source. 
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In batch erasure coding, only a source encodes packets and 
other nodes relay encoded packets while in batch network 
coding, relays also participate in coding. Upon receiving a 
coded packet, relays first check whether it is innovative. Non-
innovative packets are discarded while innovative packets are 
stored in the generation buffer. For each newly arrived 
innovative packet, relays generate and send out a new coded 
packet, which is a new linear combination of all received 
innovative coded packets in the same generation. This 
procedure is called “re-encoding.” Note that relays do not 
attempt to recover the original data packets. The re-encoded 
packets, by induction, are still linear combination of original 
data packets. This simple innovative checking and re-
encoding on relays will make a major difference in 
performance, as will be shown in Section 3. 

Since each coded packet must be a linear combination of 
ALL data packets in the same generation, at the source a delay 
is incurred until all data packets in a generation arrive. Further, 



at the destinations, either all data packets in a generation will 
be decoded successfully, or none will be, under batch coding.  

In order to formulate the coding delay, we first define the 
“delay” as the time difference from the moment when a packet 
is received by the application at the destination, to when it is 
delivered to the application at the source. Let ti denote the 
time that the source generates datai and tci denote the time that 
ith coded packet is sent out. Assume the four delay 
components - processing, transmission, propagation, and 
queuing delay - are constant. Let dn be the constant delay in 
the network including all delay components, and dc be the 
constant decoding delay. Assume each generation has k data 
packets. Therefore, in lossless links, the delay to deliver datai 
will be: 
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For example, the delay for delivering data1 will be tc4-
t1+dn+dc as shown in Fig. 1, where we assume the generation 
size is k=4 and the coding redundancy is r=1.25. Therefore, 
k*r=5 coded packets will be sent out for every generation. 
Note that the figure does not show the re-encoding process 
because the latter does not significantly affect the coding 
analysis while at the same time creates a graph that is too 
complicated to draw in limited space. A detailed description of 
re-encoding can be found in [9].  

Assuming now that packet losses are possible over the 
communications path, data packets can still be decoded as 
long as any subset of 4 linearly independent coded packets out 
of the 5 transmitted by the source is received. The generation 
#2 in Fig. 1 shows an example of loss that was recovered and 
resulted in a successful decoding. However, if the redundancy 
level is not enough to compensate for losses, none of the data 
packets in this generation will be decoded as depicted in Fig. 2. 
Here the loss of two packets renders it impossible to decode 
this generation. 

 

 
Fig. 1 Batch Coding Example 

 
Fig. 2 Batch Coding: Undecodable Case 

2.2 Pipeline Coding 
2.2.1Pipeline Encoding and Decoding 

Our pipeline coding scheme aims to reduce the coding delay 
as well as to further improve the throughput. Normally, 
packets are not sent from an application all at once. Therefore, 
in pipeline coding, we relax the limitation of waiting for all 
data packets of a generation to be received from the 
application. Adopting the same notation in section 2.1, the 
encoding function is then changed as following:  
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Where the new variable m is the number of data packets 
currently present in the generation buffer. In other words, 
upon receiving a new data packet, the source will instantly 
trigger the encoding process based on currently received data 
packets. If all coded packets are delivered successfully, 
destinations can construct the following lower triangular 
matrix without any extra computation: 
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The above linear equation can be solved progressively 
without waiting for generation completion. For example, upon 
receiving c1, destinations can decode p1, and so on. Coding 
redundancy is applied at the source in order to mitigate losses, 
in a slight different way from batch coding. Let r be the 
coding redundancy, where r≥1. Per each data packet, with a 
probability of r r− ⎢ ⎥⎣ ⎦ , r+1 coded packets are generated and 

sent; with a probability of 1 ( )r r− − ⎢ ⎥⎣ ⎦ , r coded packets are 

generated and sent. In other words, redundancy is uniformly 
distributed among every data packet. Also, if network coding 
is used, relays will all participate in coding, as explained in [9], 
in order to produce further redundancy of coded packets. 

In the batch coding example (Fig. 1), the delay of data 
packets is shown in eq. (3), which is two constant delays plus 
the time difference between the data packet sent from the 
source application and the last innovative packet sent from the 
source. Following the same notation, ti denotes the time when 
the source generates datai and tci denotes the time when the ith 
coded packet is sent out. If pipeline coding is adopted, in 
lossless links, the delay of datai will become tci- ti+ dn+ dc, 



which is much lower than eq. (3) delay in most cases. Thus, 
the delay is greatly reduced. 

Fig. 3 presents an example of pipeline coding, with 
generation size, k = 4 and source coding redundancy, r = 1.25. 
The re-encoding part is not shown for simplicity. As shown in 
the figure, data packets are encoded instantly upon arrival. 
Similarly, at the destination, coded packets can be decoded 
immediately once a new innovative packet arrives. For 
example, if c1 is delivered successfully, it is decoded 
immediately at the destination. This gives us a delay of tc1- t1+ 
dn+ dc. 

In the case of packet losses as shown in the 2nd generation of 
Fig. 3, the destination will store un-decodable packets and 
wait for the next packet with which, hopefully, the previous 
loss can be recovered. As soon as a new innovative coded 
packet arrives and thus Gaussian Elimination can decode new 
unknown packets, newly decodable packets will then be 
delivered to upper layer. In Fig. 3, after receiving c9 and c10, 
data7 and data8 will be decoded. Let tc10 denote the time that 
c10 is sent. The delay in this case will be tc10 – t7+ dn+ dc for 
data7 and tc10 – t8+ dn+ dc for data8. These two data packets 
will have the same amount of delay as in batch coding scheme, 
but data5 and data6 still benefit from pipeline coding. 

Pipeline coding can partially recovers a subset of the data 
packets of a generation and deliver them to the upper layer. 
This is a significant difference from batch coding, which 
either delivers an entire generation to the upper layer, or 
discards the whole generation. For example, assume that c10 of 
Fig. 3 is lost, data packet #7 and #8 will never have a chance 
to be decoded regardless of which coding scheme is used. 
However, without pipeline coding, none of the data packets in 
2nd generation can be decoded, while with pipeline coding, we 
can still decode data packets #5 and #6. 

 
Fig. 3 Pipeline Coding Example 

The ability of “partial” generation recovery is important in 
real time stream applications. It would not be useful of course 
in reliable data applications, where the entire generation must 
be received (“all or nothing”).  

2.2.2Encoding and Decoding Procedure 
Fig. 4 shows the encoding procedure of our proposed 

pipeline coding. The coding module is implemented at the 
network layer and it does encoding, decoding, and 
broadcasting. When the source receives a data packet from the 

transport layer, it first stores the data in the generation buffer. 
Thereafter, based on the coding redundancy, a number of 
coded packets are generated and sent out. For each generated 
coded packet, the source first randomly generates the coding 
coefficients. Secondly, it checks the generation buffer. For a 
missing packet, which has not arrived yet, the corresponding 
coefficient is set to zero. Finally, the source encodes the data 
packets based on this encoding vector, and sends it to the 
lower layer. Note that the ‘if’ statement in the while loop is to 
make sure redundant packets are generated uniformly instead 
of always in the end of the generation. 

Encoding Procedure 
Function Handle_Packets_from_Transport(data) 

Store data to generation buffer 
Coded_Packet_Gen(coding_redundancy) 

Function Coded_Packet_Gen(num) 
    i=0 

while i<num do 
if (num-i<1 and rand()%100 >num-i) then 

break 
Generate Coding Vector 
for j=0..generation_size-1do 
  if generation_buffer[j] is NULL then 
    coding_vector[j]=0 
Encode packet 
Send Coded Packet to MAC layer 
i=i+1 

Fig. 4 Pipeline Coding－Encoding Procedure 

Fig. 5 is the decoding procedure. A destination first 
examines whether the received coded packet is innovative or 
not. An innovative packet will be stored in the generation 
buffer. Afterward, the decoding module invokes Gaussian 
Elimination routines and attempts to decode data packets. 
After decoding, newly decoded data packets will be stored 
into another decoding buffer and then delivered to the upper 
layer. Note that in some rare cases, a few packets might be 
decoded out-of-order. In order to reduce the impact to TCP, 
we have a function to avoid out-of-order data packet delivery. 
However, this contributes only little to this performance study, 
and thus the detail is not shown in the pseudo-code in this 
paper. 

Decoding Procedure 
Function Handle_Packets_from_MAC(data) 

if (not innovative(data)) then 
  Message_Free(data) 
  return 
store data to generation buffer 
Gaussian_Elimination(generation) 
if (decodable packets cause no reordering) then 
  Deliver_to_Tranport(newly decoded data packets) 

Fig. 5 Pipeline Coding－Decoding Procedure 



3  EXPERIMENTS RESULTS 
We run simulation experiments and testbed experiments. For 

the simulation, the proposed pipeline network coding scheme 
was implemented on QualNet 4.5 [15], network simulator. For 
the testbed, the proposed pipeline network coding was 
implemented in Linux kernel as a coding element of the Click 
modular router [12]. The following two sections describe the 
configuration of the simulation setup and present the 
simulation results. Section 3.3 further shows the results of the 
testbed experiments. 

3.1 Simulation Scenario 
The simulation topologies under study are the single path 

string topology shown in Fig. 6 and the multipath braided 
topology shown in Fig. 7. Nodes on both topologies are 
placed on grids, with grid edge =150m. For each topology, we 
use a single traffic flow from a single source to a single 
destination. The generated traffic is CBR/UDP traffic. Note 
that since the proposed coding scheme exploits a pure-
broadcasting channel access protocol, multicast/broadcast can 
also be supported. Namely, all nodes in the network can hear 
the coded packets and thus can decode the stream if they are 
multicasting clients. 

For the channel access protocol, standard 802.11b 
(CSMA/CA) is used in “single path without coding” scenario. 
For all the remaining cases, a pure-broadcasting scheme is 
used. Pure-broadcasting means all packets are sent in standard 
802.11b broadcast mode. The reason why we do not adopt the 
pseudo-broadcasting approach proposed in [13] is that such 
design is not supported by all hardware [14]. However, since 
RTS/CTS will not be used in broadcast mode, we exploit the 
idea from [10], where a small amount of random delay is 
added before delivering the packets to MAC layer. This short 
random delay effectively avoids phasing, namely the situation 
where all nodes receive an innovative packet, finish re-
encoding, and attempt to send it out at the same instant. 

The following subsections will discuss the simulation results 
of UDP. Further details of the simulation configuration are 
given in table 2. 

 
Fig. 6 String Topology 

 
Fig. 7 Braided Topology 

Table 2. Simulation Configuration 
Parameter Value 

Grid Distance 150 m 
Channel Bit-rate 11 Mbps 
Access Control 802.11b +RTS/CTS for string 

topology , no coding;  
802.11b broadcast mode, for all 

other cases. 
Transport and  

Application Layer
CBR/UDP (820Kbps)  

Per Link Loss 
Rate 

0%~60% 

Packet Size 1500Bytes 
3.2 Simulation Result 

A CBR application of 820Kbps sending rate is configured at 
the source in our simulation study. 820Kbps is below the 
saturation throughput of the 3-hop wireless network, thus it 
leaves room for redundant packets. Topologies and coding 
schemes tested using CBR/UDP traffic are summarized in 
tables 3.  

Table 3 CBR/UDP Simulations over String Topology 
Traffic 
Type

Topology Coding Scheme Coding Redundancy

String No coding (Unicast) No Coding 
No Coding (Broadcast) No Coding 
Batch Network Coding 2.5 

CBR/
UDP Braided

Pipeline Network Coding 2.5 
 

Note that the coding redundancy is chosen to be 2.5 based 
on a previous simulation study, which shows that a 
redundancy level of 2.5 is about the right level to compensate 
losses without congesting the network. 

The throughput-to-loss plot is demonstrated in Fig. 8. The 
single path without coding case is included as the base case. 
As shown in Fig. 8, generally, as the loss rate increases, all 
throughput curves drop. Also, all braided cases significantly 
outperform the string without coding. Pipeline network coding 
performs the best regardless of the link loss rate. The 
throughput of pipeline network coding shows no degradation 
for loss rate under 35%. Multipath without coding achieves 
2nd highest throughput, which is slightly better than multipath 
with batch network coding case. This fact was also noted in 
[16]. Based on these simulation results, we notice that 
supporting partial decoding of a generation can significantly 
improve throughput compared to batch network coding. 

Fig. 9 presents the delay-to-loss plot for the same set of 
configurations. As in Fig. 8, the single path no coding case is 
shown as the baseline case. From Fig. 9, we notice that, 
multipath without coding has almost the same delay as single 
path, while Fig. 8 shows that the throughput is greatly 
improved. Also, pipeline network coding reduces the delay 
significantly from batch network coding. In addition, we 
observe that network coding delay increases as the loss rate 
increases. 



 
Fig. 8 UDP Throughput (braided topology) 

 
Fig. 9 UDP Delay (braided topology) 

3.3 Testbed Experiment Results 
The proposed coding scheme is also implemented in Click 

modular router [12] as a coding element inside Linux kernel. 
Fig. 10 shows the configuration of our experiment topology. 
The bit-rate of the source stream is 192 kbps. The source 
coding redundancy at the streaming server is 2.0 for both 
batch coding and pipeline coding. Similar to the simulation, 
we artificially introduce random drops at the receiving sides to 
emulate a highly lossy scenario.  

Fig. 11 shows the packet delivery ratio of one of the clients 
for the simple multipath without coding, batch coding, and 
pipeline coding cases. As we expect from the simulation 
experiments, batch coding does not significantly outperform 
multipath without coding. Pipeline coding does much better 
than the two previous schemes and constantly delivers more 
than 98% of the packets. Fig. 14 shows the video quality in 
PSNR for these three cases, which shows a significant 
improvement when using pipeline coding. 

 
Fig. 10 Testbed Experiment Topology 

 
Fig. 11 Packet Delivery Ratio 

 
Fig. 12 PSNR 

4  CONCLUSIONS 
In this paper, we presented a pipeline coding scheme to be 

incorporated into erasure coding and network coding. 
Simulation results show that the proposed coding scheme 
significantly improves UDP streaming throughput in a high 
loss, multihop wireless scenario. In addition, the delays are 
greatly reduced with respect to batch coding. Moreover, the 
pipeline coding scheme is totally transparent to both higher 
and lower layers, and requires no special hardware support. 
The results in this paper represent a preliminary exploration of 
the performance of pipeline coding. From this study, several 
research issues have emerged which will stimulate further 
explorations: in particular, the use of pipeline coding to 
protect from other causes of degradation beyond packet loss 
(e.g., mobility, jamming etc); the use of pipelining in erasure 
coding and the comparison with Pipeline network coding, and; 
the relaxation of the fixed generation concept and its 
replacement with a variable size “generation window”   
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