
Pipeline Network Coding for Multicast Streams (Invited Paper)
Chien-Chia Chen, Soon Y. Oh, Phillip Tao, Mario Gerla, M. Y. Sanadidi

UCLA Computer Science Department, Los Angeles, CA 90095, USA
{chienchiachen, soonoh, ptao, gerla, medy}@cs.ucla.edu

ABSTRACT
This paper studies the performance of pipeline network

coding for multicast stream distribution in high loss rate
MANET scenarios. Most of the previous network coding
implementations have been based on batch network coding,
where all blocks in the same batch are mixed together. Batch
coding requires that the entire batch is received before
decoding at destination. Thus, it introduces high decoding
delays that impact the stream reception quality. Instead of
waiting for the entire batch (i.e., generation), pipeline network
coding encodes/decodes packets progressively. Consequently,
pipeline network coding yields several benefits: (1) reduced
decoding delay, (2) further improved throughput, (3)
transparency to higher layers (UDP, TCP, or other
applications), (4) no special hardware support and (5) easier
implementation. We show performance gain of pipeline
coding compared to batch coding via extensive simulation
experiments.

Keywords: Network Coding, Multicast

1 INTRODUCTION
Due to the nature of wireless communications, MANETs are

vulnerable to channel errors, interference and jamming. There
are two well known approaches for effective error recovery;
Forward Error Correction [3] and ARQ. Since the targeted
application here is real time multicast streaming, the ARQ
scheme is not appropriate. In order to efficiently control losses,
recent research in this area has exploited FEC-based coding
schemes, such as erasure coding [4] and network coding [5-7].

The word “erasures” at the network layer means “missing
packets in a stream” [4] and erasure coding is classified as
FEC coding for binary erasure channels since a source
achieves error correction by injecting redundant data. A
source generates n packets from k original ones. The original
data can be reconstructed from a subset of n packets. The most
common approach of erasure coding proposed in [4]1 and in
this paper we define a new term “batch erasure coding” that
generates encoded packets only from the same batch. As for
network coding, we do a similar thing. A stream of packets is
split into k packets called “generation” [7] and the source
produces n coded packets for each generation using random

1 There are a lot of other approaches for both erasure coding and network

coding. In this paper, we narrow down the definition to the specific coding
schemes as described in our paper. Other approaches not used in this paper
are given as references only.

linear coding. We define r=n/k as the “coding redundancy” in
this paper. At destinations, any subset of k linearly
independent coded packets is sufficient to reconstruct the
original generation. In other words, n-k losses are allowed in a
group of n coded packets. The difference between Erasure
coding and network coding is that in the former the coding is
done only at the source while in the latter the coding is done
also at intermediate nodes. In fact, Erasure coding can be
viewed as a subset of network coding.

The above erasure coding scheme is called “pre-defined rate
coding” since coding redundancy is decided before
transmission. Another form of erasure coding is called
“rateless coding,” which can generate infinite encoded packets.
Namely, there is feedback from destination to source and the
source will adaptively adjust the redundancy depending on
reception quality at destination etc. However, end to end
feedback can be slow and is not practical in
multicast/broadcast because of feedback control message
“explosion” Fountain Codes [17] and Raptor Codes [18] are
this type of coding schemes. In this paper, we only consider
pre-defined rate coding. In this respect, it should be noted that
network coding allows dynamic adjustment of redundancy
WITHOUT expensive end to end feedback since it can just
rely on downstream neighbor feedback to adjust
retransmissions.

In disruptive networking environments, end-to-end erasure
coding is not sufficient to achieve reliable packet transmission
[8]. Thus, researchers have applied network coding to such
challenged environments, where the broadcast nature of
wireless medium renders network coding particularly effective
[1]. Unlike source coding, as mentioned earlier all nodes in
the network participate in the encoding process. In this paper,
we use “batch network coding” to refer to a network coding
scheme where source and relay nodes encode data packets in
the same generation using random linear coding. Batch
network coding is one of the most common approaches of
network coding [1, 6-7, 9-11]1.

However, there are two critical drawbacks in both batch
erasure coding and batch network coding. First of all, they
introduce an encoding and decoding delay that proportionally
increases with generation size. Thus the quality of real-time
streaming degrades due to delay and jitter. Furthermore,
because of the generation based coding, a generation is
decodable only once enough linearly independent (i.e.,
innovative) packets arrive; otherwise, the entire generation is
discarded. In other words, throughput may significantly

degrade due to frequent generation discarding in a lossy
network.

To solve these batch coding problems, we propose a coding
scheme, “pipeline coding,” where both encoding and decoding
can proceed progressively. Instead of waiting for all packets in
a generation to arrive, sources start encoding and sending
coded packets whenever a new data packet arrives. At the
destination, data packets can also be reconstructed
“progressively,” i.e., incrementally. Consequently, pipeline
coding achieves (1) a lower coding delay, (2) a higher
throughput, (3) transparency to higher layers (UDP, TCP, or
other applications), and (4) no special hardware requirement.

In this paper we evaluate the impact of the pipeline concept
on network coding. A future paper will evaluate pipelining for
erasure coding. The rest of the paper is organized as follows.
Section 2 depicts the detail of the proposed coding scheme.
Simulation results and testbed experiment results are
presented in Section 3. Section 4 concludes the paper.

2 PIPELINE CODING
This section first gives the mathematical definition of batch

coding; next the mathematical definition of pipeline coding is
presented; and the proposed encoding and decoding
procedures are described lastly. Throughout this paper, the
term “erasure coding” refers to source-side only network
coding, and “network coding” refers to the case where relays
participate in encoding along with the source. Table 1 below
provides a summary of the terminology we adopt in this paper.

2.1Batch Coding
As defined previously, in this paper, batch coding refers to

both batch erasure coding and batch network coding. Suppose
at the source, an application generates a series of equal-sized
packets p1, p2, p3,…,. Let k be the number of packets in a
single generation. A coded packet c in ith generation is then
defined as:

1

k

j i k j
j

e × +
=

= ∑c p (1)

where ke is a particular element in a particular finite Galois
field F , and i k× is the total number of packets transmitted so
far in the file, before the ith generation. Throughout this article,
we use lowercase boldface letters to denote vectors, frames, or
packets; uppercase letters to denote matrices; and italics to
denote variables or fields in the packet header. Every
arithmetic operation is over F so that data packets pi and
coded packets c are also regarded as vectors over F . Let r
denote the coding redundancy, where r≥1. For each generation,
the source will produce k r× coded packets. At destination
side, after receiving k linearly independent packets, the
destination can then reconstruct the original content by
solving the following linear system of equations as given in eq.
(2) using Gaussian Elimination.

Table 1. Definitions of Terms Used in This Paper
Term Definition

Erasure Coding Source-side only coding.
Network Coding Source-side and relay coding.

Batch Coding Every coded packet will encode all
data packets within the same
generation. Coding and decoding
begins only when the generation
rank is “full”

Pipeline Coding Coded packets will be generated
upon every new data packet arriving.
Destinations decode the data packets
progressively if possible.

Generation A set of packets that are encoded or
decoded together as a unit.

Coding Vector
(Encoding

Vector)

A vector of coefficients that reflect
the linear combination of data
packets.

Rank
(Degree of
Freedom)

Number of linearly independent
combinations of data packets.

Innovative
Packet

A packet that increases the rank.

Coding
Redundancy

Number of coded packets sent per
generation divided by generation
size.

Delay The time difference between packet
reception by destination application
and transmission from source.

(1) (1)

1 1 1

() ()
1

k

k k
k k k

e e

e e

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

c p

c p

 (2)

In batch erasure coding, only a source encodes packets and
other nodes relay encoded packets while in batch network
coding, relays also participate in coding. Upon receiving a
coded packet, relays first check whether it is innovative. Non-
innovative packets are discarded while innovative packets are
stored in the generation buffer. For each newly arrived
innovative packet, relays generate and send out a new coded
packet, which is a new linear combination of all received
innovative coded packets in the same generation. This
procedure is called “re-encoding.” Note that relays do not
attempt to recover the original data packets. The re-encoded
packets, by induction, are still linear combination of original
data packets. This simple innovative checking and re-
encoding on relays will make a major difference in
performance, as will be shown in Section 3.

Since each coded packet must be a linear combination of
ALL data packets in the same generation, at the source a delay
is incurred until all data packets in a generation arrive. Further,

at the destinations, either all data packets in a generation will
be decoded successfully, or none will be, under batch coding.

In order to formulate the coding delay, we first define the
“delay” as the time difference from the moment when a packet
is received by the application at the destination, to when it is
delivered to the application at the source. Let ti denote the
time that the source generates datai and tci denote the time that
ith coded packet is sent out. Assume the four delay
components - processing, transmission, propagation, and
queuing delay - are constant. Let dn be the constant delay in
the network including all delay components, and dc be the
constant decoding delay. Assume each generation has k data
packets. Therefore, in lossless links, the delay to deliver datai
will be:

* i n cic kk
t t d d⎡ ⎤
⎢ ⎥

− + + (3)

For example, the delay for delivering data1 will be tc4-
t1+dn+dc as shown in Fig. 1, where we assume the generation
size is k=4 and the coding redundancy is r=1.25. Therefore,
k*r=5 coded packets will be sent out for every generation.
Note that the figure does not show the re-encoding process
because the latter does not significantly affect the coding
analysis while at the same time creates a graph that is too
complicated to draw in limited space. A detailed description of
re-encoding can be found in [9].

Assuming now that packet losses are possible over the
communications path, data packets can still be decoded as
long as any subset of 4 linearly independent coded packets out
of the 5 transmitted by the source is received. The generation
#2 in Fig. 1 shows an example of loss that was recovered and
resulted in a successful decoding. However, if the redundancy
level is not enough to compensate for losses, none of the data
packets in this generation will be decoded as depicted in Fig. 2.
Here the loss of two packets renders it impossible to decode
this generation.

Fig. 1 Batch Coding Example

Fig. 2 Batch Coding: Undecodable Case

2.2 Pipeline Coding
2.2.1Pipeline Encoding and Decoding

Our pipeline coding scheme aims to reduce the coding delay
as well as to further improve the throughput. Normally,
packets are not sent from an application all at once. Therefore,
in pipeline coding, we relax the limitation of waiting for all
data packets of a generation to be received from the
application. Adopting the same notation in section 2.1, the
encoding function is then changed as following:

1

m

j i k j
j

e × +
=

= ∑c p (4)

Where the new variable m is the number of data packets
currently present in the generation buffer. In other words,
upon receiving a new data packet, the source will instantly
trigger the encoding process based on currently received data
packets. If all coded packets are delivered successfully,
destinations can construct the following lower triangular
matrix without any extra computation:

(1)
1

1 1(2) (2)
1 2

() () ()
1 2

0 0

0
k kk k k

k

e
e e

e e e

⎡ ⎤
⎡ ⎤ ⎡ ⎤⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥=⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

⎢ ⎥⎣ ⎦

c p

c p

 (5)

The above linear equation can be solved progressively
without waiting for generation completion. For example, upon
receiving c1, destinations can decode p1, and so on. Coding
redundancy is applied at the source in order to mitigate losses,
in a slight different way from batch coding. Let r be the
coding redundancy, where r≥1. Per each data packet, with a
probability of r r− ⎢ ⎥⎣ ⎦ , r+1 coded packets are generated and

sent; with a probability of 1 ()r r− − ⎢ ⎥⎣ ⎦ , r coded packets are

generated and sent. In other words, redundancy is uniformly
distributed among every data packet. Also, if network coding
is used, relays will all participate in coding, as explained in [9],
in order to produce further redundancy of coded packets.

In the batch coding example (Fig. 1), the delay of data
packets is shown in eq. (3), which is two constant delays plus
the time difference between the data packet sent from the
source application and the last innovative packet sent from the
source. Following the same notation, ti denotes the time when
the source generates datai and tci denotes the time when the ith
coded packet is sent out. If pipeline coding is adopted, in
lossless links, the delay of datai will become tci- ti+ dn+ dc,

which is much lower than eq. (3) delay in most cases. Thus,
the delay is greatly reduced.

Fig. 3 presents an example of pipeline coding, with
generation size, k = 4 and source coding redundancy, r = 1.25.
The re-encoding part is not shown for simplicity. As shown in
the figure, data packets are encoded instantly upon arrival.
Similarly, at the destination, coded packets can be decoded
immediately once a new innovative packet arrives. For
example, if c1 is delivered successfully, it is decoded
immediately at the destination. This gives us a delay of tc1- t1+
dn+ dc.

In the case of packet losses as shown in the 2nd generation of
Fig. 3, the destination will store un-decodable packets and
wait for the next packet with which, hopefully, the previous
loss can be recovered. As soon as a new innovative coded
packet arrives and thus Gaussian Elimination can decode new
unknown packets, newly decodable packets will then be
delivered to upper layer. In Fig. 3, after receiving c9 and c10,
data7 and data8 will be decoded. Let tc10 denote the time that
c10 is sent. The delay in this case will be tc10 – t7+ dn+ dc for
data7 and tc10 – t8+ dn+ dc for data8. These two data packets
will have the same amount of delay as in batch coding scheme,
but data5 and data6 still benefit from pipeline coding.

Pipeline coding can partially recovers a subset of the data
packets of a generation and deliver them to the upper layer.
This is a significant difference from batch coding, which
either delivers an entire generation to the upper layer, or
discards the whole generation. For example, assume that c10 of
Fig. 3 is lost, data packet #7 and #8 will never have a chance
to be decoded regardless of which coding scheme is used.
However, without pipeline coding, none of the data packets in
2nd generation can be decoded, while with pipeline coding, we
can still decode data packets #5 and #6.

Fig. 3 Pipeline Coding Example

The ability of “partial” generation recovery is important in
real time stream applications. It would not be useful of course
in reliable data applications, where the entire generation must
be received (“all or nothing”).

2.2.2Encoding and Decoding Procedure
Fig. 4 shows the encoding procedure of our proposed

pipeline coding. The coding module is implemented at the
network layer and it does encoding, decoding, and
broadcasting. When the source receives a data packet from the

transport layer, it first stores the data in the generation buffer.
Thereafter, based on the coding redundancy, a number of
coded packets are generated and sent out. For each generated
coded packet, the source first randomly generates the coding
coefficients. Secondly, it checks the generation buffer. For a
missing packet, which has not arrived yet, the corresponding
coefficient is set to zero. Finally, the source encodes the data
packets based on this encoding vector, and sends it to the
lower layer. Note that the ‘if’ statement in the while loop is to
make sure redundant packets are generated uniformly instead
of always in the end of the generation.

Encoding Procedure
Function Handle_Packets_from_Transport(data)

Store data to generation buffer
Coded_Packet_Gen(coding_redundancy)

Function Coded_Packet_Gen(num)
 i=0

while i<num do
if (num-i<1 and rand()%100 >num-i) then

break
Generate Coding Vector
for j=0..generation_size-1do
 if generation_buffer[j] is NULL then
 coding_vector[j]=0
Encode packet
Send Coded Packet to MAC layer
i=i+1

Fig. 4 Pipeline Coding－Encoding Procedure

Fig. 5 is the decoding procedure. A destination first
examines whether the received coded packet is innovative or
not. An innovative packet will be stored in the generation
buffer. Afterward, the decoding module invokes Gaussian
Elimination routines and attempts to decode data packets.
After decoding, newly decoded data packets will be stored
into another decoding buffer and then delivered to the upper
layer. Note that in some rare cases, a few packets might be
decoded out-of-order. In order to reduce the impact to TCP,
we have a function to avoid out-of-order data packet delivery.
However, this contributes only little to this performance study,
and thus the detail is not shown in the pseudo-code in this
paper.

Decoding Procedure
Function Handle_Packets_from_MAC(data)

if (not innovative(data)) then
 Message_Free(data)
 return
store data to generation buffer
Gaussian_Elimination(generation)
if (decodable packets cause no reordering) then
 Deliver_to_Tranport(newly decoded data packets)

Fig. 5 Pipeline Coding－Decoding Procedure

3 EXPERIMENTS RESULTS
We run simulation experiments and testbed experiments. For

the simulation, the proposed pipeline network coding scheme
was implemented on QualNet 4.5 [15], network simulator. For
the testbed, the proposed pipeline network coding was
implemented in Linux kernel as a coding element of the Click
modular router [12]. The following two sections describe the
configuration of the simulation setup and present the
simulation results. Section 3.3 further shows the results of the
testbed experiments.

3.1 Simulation Scenario
The simulation topologies under study are the single path

string topology shown in Fig. 6 and the multipath braided
topology shown in Fig. 7. Nodes on both topologies are
placed on grids, with grid edge =150m. For each topology, we
use a single traffic flow from a single source to a single
destination. The generated traffic is CBR/UDP traffic. Note
that since the proposed coding scheme exploits a pure-
broadcasting channel access protocol, multicast/broadcast can
also be supported. Namely, all nodes in the network can hear
the coded packets and thus can decode the stream if they are
multicasting clients.

For the channel access protocol, standard 802.11b
(CSMA/CA) is used in “single path without coding” scenario.
For all the remaining cases, a pure-broadcasting scheme is
used. Pure-broadcasting means all packets are sent in standard
802.11b broadcast mode. The reason why we do not adopt the
pseudo-broadcasting approach proposed in [13] is that such
design is not supported by all hardware [14]. However, since
RTS/CTS will not be used in broadcast mode, we exploit the
idea from [10], where a small amount of random delay is
added before delivering the packets to MAC layer. This short
random delay effectively avoids phasing, namely the situation
where all nodes receive an innovative packet, finish re-
encoding, and attempt to send it out at the same instant.

The following subsections will discuss the simulation results
of UDP. Further details of the simulation configuration are
given in table 2.

Fig. 6 String Topology

Fig. 7 Braided Topology

Table 2. Simulation Configuration
Parameter Value

Grid Distance 150 m
Channel Bit-rate 11 Mbps
Access Control 802.11b +RTS/CTS for string

topology , no coding;
802.11b broadcast mode, for all

other cases.
Transport and

Application Layer
CBR/UDP (820Kbps)

Per Link Loss
Rate

0%~60%

Packet Size 1500Bytes
3.2 Simulation Result

A CBR application of 820Kbps sending rate is configured at
the source in our simulation study. 820Kbps is below the
saturation throughput of the 3-hop wireless network, thus it
leaves room for redundant packets. Topologies and coding
schemes tested using CBR/UDP traffic are summarized in
tables 3.

Table 3 CBR/UDP Simulations over String Topology
Traffic
Type

Topology Coding Scheme Coding Redundancy

String No coding (Unicast) No Coding
No Coding (Broadcast) No Coding
Batch Network Coding 2.5

CBR/
UDP Braided

Pipeline Network Coding 2.5

Note that the coding redundancy is chosen to be 2.5 based
on a previous simulation study, which shows that a
redundancy level of 2.5 is about the right level to compensate
losses without congesting the network.

The throughput-to-loss plot is demonstrated in Fig. 8. The
single path without coding case is included as the base case.
As shown in Fig. 8, generally, as the loss rate increases, all
throughput curves drop. Also, all braided cases significantly
outperform the string without coding. Pipeline network coding
performs the best regardless of the link loss rate. The
throughput of pipeline network coding shows no degradation
for loss rate under 35%. Multipath without coding achieves
2nd highest throughput, which is slightly better than multipath
with batch network coding case. This fact was also noted in
[16]. Based on these simulation results, we notice that
supporting partial decoding of a generation can significantly
improve throughput compared to batch network coding.

Fig. 9 presents the delay-to-loss plot for the same set of
configurations. As in Fig. 8, the single path no coding case is
shown as the baseline case. From Fig. 9, we notice that,
multipath without coding has almost the same delay as single
path, while Fig. 8 shows that the throughput is greatly
improved. Also, pipeline network coding reduces the delay
significantly from batch network coding. In addition, we
observe that network coding delay increases as the loss rate
increases.

Fig. 8 UDP Throughput (braided topology)

Fig. 9 UDP Delay (braided topology)

3.3 Testbed Experiment Results
The proposed coding scheme is also implemented in Click

modular router [12] as a coding element inside Linux kernel.
Fig. 10 shows the configuration of our experiment topology.
The bit-rate of the source stream is 192 kbps. The source
coding redundancy at the streaming server is 2.0 for both
batch coding and pipeline coding. Similar to the simulation,
we artificially introduce random drops at the receiving sides to
emulate a highly lossy scenario.

Fig. 11 shows the packet delivery ratio of one of the clients
for the simple multipath without coding, batch coding, and
pipeline coding cases. As we expect from the simulation
experiments, batch coding does not significantly outperform
multipath without coding. Pipeline coding does much better
than the two previous schemes and constantly delivers more
than 98% of the packets. Fig. 14 shows the video quality in
PSNR for these three cases, which shows a significant
improvement when using pipeline coding.

Fig. 10 Testbed Experiment Topology

Fig. 11 Packet Delivery Ratio

Fig. 12 PSNR

4 CONCLUSIONS
In this paper, we presented a pipeline coding scheme to be

incorporated into erasure coding and network coding.
Simulation results show that the proposed coding scheme
significantly improves UDP streaming throughput in a high
loss, multihop wireless scenario. In addition, the delays are
greatly reduced with respect to batch coding. Moreover, the
pipeline coding scheme is totally transparent to both higher
and lower layers, and requires no special hardware support.
The results in this paper represent a preliminary exploration of
the performance of pipeline coding. From this study, several
research issues have emerged which will stimulate further
explorations: in particular, the use of pipeline coding to
protect from other causes of degradation beyond packet loss
(e.g., mobility, jamming etc); the use of pipelining in erasure
coding and the comparison with Pipeline network coding, and;
the relaxation of the fixed generation concept and its
replacement with a variable size “generation window”

5 REFERENCES
[1] S. Chachulski, M. Jennings, S. Katti, D. Katabi, "Trading

Structure for Randomness in Wireless Opportunistic Routing,"
in Proc. of ACM SIGCOMM 2007.

[2] V. Kawadia, P.R. Kumar, "Experimental investigations into
TCP Performance Over Wireless Multihop Networks," in Proc.
of ACM SIGCOMM 2005.

[3] J. F. Kurose and K. W. Ross, Computer Network: A Top-Down
Approach 5/e, Addison Wesley Publishing Co., Inc., Boston,
MA, 2010.

[4] L. Rizzo, "Effective Erasure Codes for Reliable Computer
Communication Protocols," in ACM SIGCOMM Computer
Communication Review, vol. 27, no. 2, pp. 24-36, Apr. 1997.

[5] R. Ahlswede, N. Cai, S.-Y. R. Li, R. W. Yeung, "Network
information flow," IEEE Trans. on Information Theory, vol.
46, no. 4, pp. 1204–1216, July 2000.

[6] R. Koetter and M. Medard, "An algebraic approach to network
coding," IEEE/ACM Trans. on Networking, vol. 11, no. 5, pp.
782–795, 2003.

[7] P. A. Chou, Y. Wu, K. Jain, "Practical Network Coding," in
Proc. of Allerton Conference on Communication, Control, and
Computing, 2003.

[8] A. Fujimura, S. Y. Oh, M. Gerla, "Network coding vs. erasure
coding: Reliable multicast in ad hoc networks," in Proc of
MilCom 2008.

[9] T. Ho, M. Medard, J. Shi, M. Effros, D. Karger, "On
randomized network coding," in Allerton, 2003.

[10] J.-S. Park, M. Gerla, D. S. Lun, Yu. Yi, M. Medard,
"CodeCast: A Network Coding based Ad hoc Multicast
Protocol," IEEE Wireless Communications, October 2006.

[11] C.-C. Chen, C.-N. Lien, U. Lee, S. Y. Oh, "CodeCast:
Network Coding Based Multicast in MANETs," in Demos of
the 10th International Workshop on Mobile Computing
Systems and Applications (HotMobile 2009), Feb. 2009.

[12] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and
M. Frans Kaashoek, "The Click modular router," ACM
Transactions on Computer Systems 18(3), pp. 263-297, August
2000..

[13] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Medard, J. Crowcroft,
"XORs in the Air: Practical Wireless Network Coding,"
IEEE/ACM Trans. on Networking, vol. 16, no. 3, June 2008.

[14] Y. Huang, M. Ghaderi, D. Towsley, W. Gong, "TCP
Performance in Coded Wireless Mesh Networks," in Proc. of
IEEE SECON 2008.

[15] Scalable Networs Inc. QualNet. http://www.scalble-
networks.com.

[16] S. Y. Oh, M. Gerla, "Robust MANET Routing using Adaptive
Path Redundancy and Coding," in Proc of THE FIRST
International Conference on COMmunication Systems and
NETworkS (COMSNETS), January 2009.

[17] D. MacKay, “Fountain Codes,” IEE Proceedings on
Communications, vol. 152, no. 6, pp. 1062-1068, Dec. 2005.

[18] A. Shokrollahi, “Raptor Codes,” IEEE Trans. On Networking,
vol. 14, pp. 2551-2567, Jun. 2006.

