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ABSTRACT

The Web of today is commonly used as a platform for
hosting sophisticated applications. A key component of such
web-based applications is the programs running on the web
servers. With the growing popularity of web applications,
especially those which manage sensitive data and perform
critical functionalities (e.g., online banking), the security of
server programs has become a major concern. The BASS
project at DOCOMO USA Labs aims to understand what a
suitable model is for programming web applications, and pre-
vent common vulnerabilities using proper programming lan-
guage abstractions. In this paper, we give a status update on
BASS, including a review of previous results, an introduction
to a new prototype, and a discussion on ongoing efforts.

Keywords: Cloud computing, programming language ab-
straction, web application security.

1 Introduction

Cloud computing gives users access to powerful computing
resources through relatively lightweight client-side software
(e.g., a browser). Among other use cases, it is very helpful
in the context of mobile computing—users may leverage the
computing power on the cloud to compensate for the physical
limitations (e.g., hardware) of mobile devices.

Web applications, as an important component of cloud-
based services, are software applications running on the cloud.
They alleviate the burden of software maintenance, because
code is installed and maintained on web servers. Users access
these applications typically through the use of web browsers.

Unfortunately, it is notoriously difficult to program a solid
web application. Besides addressing web interactions, state
maintenance, and whimsical user navigation behaviors, pro-
grammers must also avoid a minefield of security vulnerabili-
ties. The problem is twofold. On the one hand, we lack a clear
understanding of the new computation model underlying web
applications. On the other hand, we lack proper abstractions
for hiding common and subtle coding details that are orthog-
onal to the functional logic of specific web applications.

The BASS project at DOCOMO USA Labs aims to address
these issues using declarative server-side scripting. It allows
programmers to work in an ideal world equipped with new ab-
stractions to tackle problematic aspects of web programming.
Early results on BASS have been published at WWW’08.1 In

1Sections 2, 3, 6, and 7 are adapted from the authors’ paper titled Better
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Figure 1: Idealistic work flow of online banking

this paper, we review basic BASS ideas, present a new BASS
prototype deployed as a Python library, and discuss ongoing
efforts on a deployment on Google App Engine.

2 Background

2.1 Server-Side Scripting
Web applications face more security threats than desktop

applications [7], [18]. Some representative ones include com-
mand injection [20], cross-site scripting (XSS) [15], cross-site
request forgery (CSRF) [3], and session fixation [14]. Any of
these could cause serious consequences: sensitive user infor-
mation could be stolen, data and associated belongings could
be damaged, or service availability could be compromised.

We use an online-banking example to explain what is in-
volved in secure server-side scripting, and how proper ab-
stractions can help. This application provides two services:
showing the account balance (the “balance” service) and set-
ting up a payment (the “payment” service). A user must be
logged in to access the services.

Although serving multiple users, this web application logi-
cally deals with one client at a time. In an ideal view, there are
multiple orthogonal instances of the server program running,
each taking care of a single client. Every single instance of
the program can be viewed as a sequential program of a con-
ventional application. A work flow graph following this ideal
view is shown in Figure 1.

The above ideal view cannot be directly implemented, be-
cause of some limitations of the underlying HTTP mecha-
nism for web interactions. In particular, there is no persistent
channel for a server program to obtain input from a client.
Instead, HTTP supports a one-shot request-response model
where a client requests resource identified by a URL, and a
server responds with the resource if the request is accepted.

Abstractions for Secure Server-Side Scripting at WWW’08.
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Figure 2: Actual work flow of online banking

Using HTTP, web interactions are typically carried out as a
sequence of requests (form submissions providing user input)
and responses (web pages presenting information):

HTTP 0→ HTML 0→ HTTP 1→ HTML 1→ HTTP 2→ HTML 2 . . .

Using this model, a server program is split into multiple frag-
ments, each taking an HTTP request and producing an HTML
response. In the response, there can be a web form with an
embedded URL pointing to the next fragment, so that the next
request is targeted correctly. Therefore, the server work flow
of our banking application is more accurately described as
in Figure 2. There are 4 program fragments connected with
URL embeddings, as indicated by the dashed lines. In par-
ticular, because the payment service requires user input, the
structure of the service loop in the ideal view can no longer
be coded as an explicit loop. Instead, a goto-style structure is
exhibited through URL embeddings. Such fragmentation and
low-level control structures obscure the control flow.

Besides obscurity, there is a bigger issue: since HTTP is
stateless, server programs must maintain program states on
their own. In the example, the user name obtained from the
login input must be saved and restored explicitly across the
later web interactions. In addition, one must somehow cor-
relate incoming requests with specific clients, since multiple
clients may be interacting with the server at the same time,
although in logically separate transactions.

In general, a web application needs to encode states at a
level above HTTP. Typically, a virtual concept of “a session”
is used to refer to a logical transaction. Every session is asso-
ciated with a unique ID, called SID. Saved program states and
incoming client requests are both identified by the SID. As a
result, much code in server programs is dedicated to manag-
ing sessions. Before generating a response, a server program
must save state and embed the SID in the response. Upon re-
ceiving a request, the server program must obtain an SID from
the request and load state. Based on the application, some
parts of the state should be saved on the server, whereas others
should be on the client via cookie or URL embedding. These
routine manipulations increase program complexity, reduce
productivity, and extend the chances of programming errors.

2.2 Security
Assuming a programmer has taken care of the above issues

correctly, the result program may still not be ready for deploy-
ment. The problem is security: clients in the real world may

be malicious, or attackers may trick innocent clients into mak-
ing mistakes. Indeed, there have been many common vulner-
abilities identified. Secure programming solutions exist, but
a programmer must be aware of all the issues involved and
implement the related defenses. Most of the defenses are or-
thogonal to the functional logic of specific web applications.
Their handling further complicates server-side scripting. We
now briefly overview some representative security issues.

CSRF: An attacker may forge a request as if it were in-
tended by a user. This is applicable when SIDs are stored in
cookies. Given a vulnerable banking program, CSRF can be
launched if a user, while logged in, opens a malicious email
containing a crafted image link. Trying to load the image, the
user’s browser may follow the link and send a request asking
for a payment to be set up to the attacker.

XSS: An attacker may inject code into the web page that
a server program sends to a user. For example, an attacker
sends to a user a crafted link with JavaScript code embedded;
when the user loads the link, a vulnerable server program may
propagate the code into the HTML response. The code, now
coming from the server, gains the privilege of the server do-
main. It may then read the cookie set by the server and send it
to the attacker. There are also second-order attacks [17] that
do not require the use of forged requests.

Session fixation: An attacker may trick a user into inter-
acting with the server using a fixed SID. This is applicable
if SIDs are embedded in URLs. A user may follow a link
in an email which claims to be from our banking site. The
link takes the user to our site, but using an SID fixed by an
attacker. If the server programs use the same SID for later
interactions after the user logs in, the knowledge of the SID
will grant the attacker the user’s privileges.

Others: Many other aspects affect security [18]. Since
a web application is implemented as multiple program frag-
ments, each fragment is open as a service interface. An at-
tacker could make up requests to the interfaces without fol-
lowing the links in server responses. Using crafted requests,
they could poison program states (e.g., by modifying naı̈ve
implementations of client-side states), inject malformed input
(e.g., by exploiting insufficient input validation), or circum-
vent work flows (e.g., by using the “back” button).

Programmers need to be aware of all these issues and fol-
low the relevant security practices. In the result code, func-
tional logic is intertwined with security manipulations. Con-
sequently, secure web programming is difficult, and web pro-
grams are hard to maintain.

3 BASS

In response to such security threats, existing languages and
frameworks for server-side scripting and the web application
security community largely promote secure coding practices
(e.g., input validation) and provide useful libraries in support
(e.g., filter functions). However, there is no guarantee that
programmers will follow the recommendations correctly, if
they followed them at all. Furthermore, even if all programs
are written with the security practices strictly enforced, the



extra care that programmers spend on preventing vulnerabil-
ities much distracts from the functional logic. Take the im-
plementation of online payments as an example. To securely
code a web interaction of “obtaining payment details,” one
must correctly perform input validation, maintain program
states across the interaction, and prevent CSRF.

Observing that many of the security issues are orthogo-
nal to the functional logic of specific web applications, we
propose some new abstractions for writing secure server pro-
grams. These abstractions provide an ideal view of key as-
pects of web programming (e.g., “to obtain a web input”),
and hide the common security handling (e.g., input valida-
tion, state maintenance, CSRF prevention). Using these ab-
stractions, a language for server-side scripting can be given a
high-level syntax and semantics that reflect secure web opera-
tions, with the enforcement of the semantics taken care of by
the language implementation following established security
practices once and for all. As a result, all programs written
in the language, although not directly dealing with low-level
security constructs, are guaranteed to be free of certain com-
mon vulnerabilities. In addition, now thinking in terms of
the high-level semantics, programmers can focus more on the
functional logic, which results in better security and higher
productivity. To some extent, the new abstractions hide secu-
rity details in the same way as object creation primitives in
OO languages hide low-level memory management details.

In particular, we propose to program web applications us-
ing a language that handles common security aspects behind
the scene. This language benefits from new abstractions de-
signed for web programming. A program in this language
more directly reflects the functional logic of the application;
therefore, it is easier to write, to reason about, and to maintain.
The language implementation (the compiler) will generate se-
cure target code following established security practices.

Abstracting web interactions From earlier discussions, it is
easy to see that much of the complication is due to the need of
obtaining user input. Therefore, supporting web interactions
is a key. We introduce a dedicated construct form for this:

form(p : “username”, q : “password”);

The intention of this is to present an HTML page to the client
and obtain some input. In our prototype, such a construct
may take as argument a full-fledged HTML document. In
this section, we simply let it take arguments to describe input
parameters of a web form for ease of exposition. In the above
example, the form construct presents to the client a form with
two fields: username and password. After the client fills in
the form and submits it, the form construct assigns the values
of the fields to the two variables p and q.

A few issues are handled transparently by the implementa-
tion. First, the server program is split upon a form construct,
and URL embedding is used to connect the control flow. Sec-
ond, input values are parsed from the form submission, and
input validation is performed according to declared variable
types. Third, security practices are followed to manage ses-
sions, maintain states, and defend against common exploits.

From a programmer’s point of view, it suffices to understand
this construct as an abstract and secure web input operation
which does not break the control flow.

Supporting user navigation The form construct implicitly
opens a service interface for receiving user requests. There
would be vulnerabilities if it were not handled properly, or
if its handling were not fully understood by the programmer.
Previous work (sans security) [2], [4], [6] on web interaction
abstractions requires the interface be “open” only once—a
second request to the interface will be rejected. This much
restricts user navigation [11], [12], [22]. In practice, it is com-
mon for a user to return to a previous navigation stage us-
ing the “back” button. In general, the user could revisit any
item in the browser history. The validity of such an operation
should be determined by the application.

We allow two modes of web interactions: a single-use mode
(formS) and a multi-use mode (formM). In the former, the in-
terface is open for request only once; revisiting the interface
results in an error. In the latter, the interface remains open for
future requests. The semantics of BASS articulates the pro-
gram behavior in both cases; therefore, the programmer can
choose the suitable one based on the application. In either
case, a request is accepted only if it follows the intended con-
trol flow of the server program to the interface. Consider our
banking example. It is okay if the user reached the service se-
lection page, bookmarked it, and reused it before logging out.
However, it is not okay if the user forged a payment request
without first going through the login page.

Maintaining program states Multi-use forms are sufficient
to accommodate all client navigation behaviors, because any
behavior can be viewed as revisiting a point in the browser
history. From a programmer’s point of view, the program is
virtually forked into multiple parallel “threads” at a multi-use
form, together with all appropriate program state. The han-
dling of the program state is nontrivial. Some parts of the
state could be local to the individual threads, whereas others
could be global to all threads. Careless treatment of the state
may result in logical errors [12].

The exact partitioning of the state should be determined by
the application. We let programmers declare mutable vari-
ables as either volatile or nonvolatile. In the BASS imple-
mentation, volatile state can be stored in a database on the
server across web interactions, thus all forked threads refer
to the same volatile state. In contrast, nonvolatile state (after
proper protection against client modifications) can be embed-
ded in the URLs of web forms upon web interactions, thus
every forked thread has its own nonvolatile state.

Manipulating client history Suppose the user tries to reload
the service selection page after logging out of our banking
application. The server program will receive a request that
should not be processed. In general, we need a mechanism
to disable some of the entries in the client history. In exist-
ing web applications, this is sometimes handled by embed-
ding special tokens into web forms and checking them upon
requests. While logging out, the server program expires the



string user, pass, payee;
int sel, amnt;

formS(user : “username”, pass : “password”);
LoginCheck(user, pass);
while (true) do {
formM(sel : “1 : balance; 2 : payment; others : logout”);
if (sel == 1)
then ShowBalance(user)
else if (sel == 2)

then {formS(payee : “payee”; amnt : “amount”);
DoPayment(user, payee, amnt)}

else {clear; break}
}

Figure 3: Simple banking in BASS

corresponding token, thus further requests to the service se-
lection page will no longer be processed.

We do not wish to expose the details of token embedding
to the programmer. Instead, we introduce a clear command
for a similar purpose. From the programmer’s point of view,
clear resets the client history so that all previously forked
threads are discarded. This roughly corresponds to the “ses-
sion timeout” behavior of many web applications. However,
instead of thinking in terms of disabling the SID token, BASS
encourages programmers to think in terms of the client his-
tory. Our previous work [25] discusses more general ways to
manipulate client history, which introduce no new difficulties.

Example revisited Figure 3 demonstrates the appeal of these
abstractions by revisiting our banking example. The new ab-
stractions provide an ideal world where there is only one client
and the client is well behaved. In the code, we obtain login
information from the client, perform login check, and proceed
with a service loop. In the loop, based on the service selection
of the client, we carry out the balance service or the payment
service, or log the user out. The service selection input is
coded using a multi-use form; therefore, the user may dupli-
cate the corresponding web page and proceed with the two
services in parallel. In addition, clear is used to disable all
service threads when the user logs out. In this example, only
the user variable is live across web interactions. Its value is
obtained from a single-use form, and will not be updated af-
ter the login process. Therefore, it can be declared as either
volatile or nonvolatile.

This code corresponds well to the work flow of Figure 1,
and is much cleaner than a version written in an existing lan-
guage. More importantly, it does not sacrifice security, be-
cause the BASS implementation will take care of the “plumb-
ings” transparently—it will split the program into fragments,
maintain states across web interactions, filter input based on
variable types, and carry out relevant security manipulations
such as the embedding of secret tokens.

4 BASS for Python

In previous work [25], we studied formal aspects of the
BASS programming model and security guarantees, and the

theory was supported by a prototype compiler for a core pro-
gramming language. The prototype provides the exact ben-
efits outlined above, but suffers from its small scale nature
when building real-world applications. Specifically, it uses a
new syntax, and lacks library and community support.

For more practical deployment, we have recently devel-
oped a new prototype in the form of a Python library using
mod python [21] (an Apache module that embeds the Python
interpreter within the Apache server). Using this new pro-
totype, programmers enjoy regular Python syntax, but must
follow specific BASS programming patterns.

4.1 Basic Coding Patterns

We stress the point that BASS programmers do not deal
directly with anything related to the underlying HTTP mech-
anism or common security protections. To some extent, the
programmer may assume that the application only interacts
with a single user, and the user is always well-behaved.

Take again the simple banking application in Figure 1 an
an example. Now we translate this work flow into a BASS
work flow. Note that we are restricted to follow basic coding
patterns of mod python. As a result, we essentially split the
work flow wherever there is an interaction with the user. This
yields the work flow in Figure 2.

Prog0, Prog1, Prog2, and Prog3 correspond to 4 routines in
mod python, each processing a user request and producing a
response HTML page to the user. Now we insert some BASS
API calls into each of these routines. At the very beginning
of the entire work flow, we add bass init. At the beginning
of all other pieces, we add bass check.

def prog0(req) :
bass init(req)

def prog1(req) :
try :
bass check(req)

exceptBassError, e :
// insert error handling code

The former sets up the environment for the BASS library,
and the latter parses the incoming request, maintains program
states, and conducts common security checks. Here req is
the standard mod python request object, and it is used in all
routines of the BASS API. Although BASS programmers do
not need to directly work with req, they must keep passing it
around for the BASS library. Programmers must follow these
coding patterns so as to enjoy the BASS programming model
and relevant security protections. Nonetheless, they do not
need to understand the implementation of these routines.

When bass check fails, exception BassErrorwill be thrown.
The parameter e of BassError contains an error message
from the BASS library. BASS programmers may analyse the
error message and build a customized error reporting page for
the user based on the application logic. Representative error
messages and their meanings are given as follows:



• Bad CID: The received request does not have a proper
CID. Plausible causes are: (1) user deleted cookie dur-
ing the session; (2) user is a victim of a CSRF attack.

• Bad SID: The received request does not come with a
valid session identifier, indicating either a session-based
attack such as session fixation, or a session timeout.

• Bad action: The received request is targeting a program
interface unexpectedly, indicating an attempt at circum-
venting the application logic.

• Bad token: The received request does not come with a
valid token, indicating that the web form should not be
accepted (e.g., re-submitting a single-use form).

• Bad cipher: The received request is not properly en-
coded, indicating a forged request.

4.2 Simple User Interfaces

At the end of a routine, mod python uses return to ren-
der a web page. Although the design of the web pages is
application-specific, the essence is to present information to
the user and obtain further input therefrom.

4.2.1 Content

A simple web page can be built in BASS using a Content ob-
ject that encapsulates a string as a web page. This is mainly
for building a static page (or the static part of a web page).
Although it is possible to build links and forms with reg-
ular HTML tags directly using Content, it does not enjoy
BASS security protections, because the BASS library would
not have a chance to embed special entities therein.

page = Content(req,′ < html >< h1 > Hi! < /h1 >′)
page.addContent(′What a nice day! < /html >′)
return page.content

Note that one must pass the request handle req to the Content
object. A Content object can be appended using a addContent
method or overwritten using a setContent method. The re-
sult page can be rendered using return.

BASS is compatible with psp (Python Server Pages) [21].
For example:

<!−− A file named t.html −−>
<html>

<h1> Hello, world! </h1>
<% = message%>

</html>

page.setContent(′What a nice day!′)
return psp.PSP(req, filename =′ t.html′,

vars = {′message′ : page.content})

4.2.2 Forms

HTML forms can be used to build more useful web pages.
BASS provides form API for this purpose.

sform = SingleForm(req, [amount, submit],′ prog3.py′)

The SingleForm class encapsulates single-use forms—forms
that can be submitted by the user at most once. The construc-
tor takes a request handle req, a list of form items, and a tar-
get action. Form items are entities that make up forms, such as
text fields, selections, and buttons. Target action points to the
server program that handles the request upon form submis-
sion. The above example creates a single-use form to obtain
details of a money withdrawal transaction, where amount and
submit are two variables holding an input field and a submit
button, respectively (we defer the creation of BASS variables
to a later section). When the user clicks on the submit button,
prog3.py will be invoked to process the request. Since this is
a single-use form, the user is only able to submit it once. For
instance, if the user accidentally submitted the form a second
time (e.g., via the reload button), an error would be raised to
the user, avoiding unintended additional withdrawal.

A multi-use form can be created as follows:

mform = MultiForm(req, [selection, submit],′ prog2.py′)

The MultiForm class encapsulates multi-use forms–forms
that can be submitted by the user multiple times. The inter-
face of the constructor is similar to that of SingleForm’s.
The above example creates a multi-use form to obtain a ser-
vice selection, where selection and submit are two vari-
ables holding an input selection of service and a submit but-
ton, respectively. When the user clicks on the submit button,
prog2.py will be invoked to process the request.

sform.render form()
mform.render form()
page.addContent(′How much?′ + sform.render form())

Both SingleForm and MultiForm are subclasses of Content.
Besides encapsulating strings, these two classes maintain var-
ious tokens and program state. BASS programmers do not
need to be aware of the internal workings of these classes.
However, after creating a BASS form, one must call render form

to render it. This routine composes an HTML form to be pre-
sented to the user; it embeds into the form object special to-
kens and program state so as to enforce security and pass on
session information.

4.2.3 Links

It is also possible to render a form as a link using render link.

balanceForm = MultiForm(req, [],′ balance.py′)
balanceLink = balanceForm.render link(′Show Balance′)
page.addContent(balanceLink)
return page.content



In this example, multi-form balanceForm is rendered
as a link with special BASS entities embedded. It is added
to a Content object page, and then rendered as a hyperlink
when displayed in a browser. Once the user clicks on the link,
the underlying web form will be submitted to the server for
processing. A link has the same single-use/multi-use property
as the underlying form.

4.2.4 Clear

Recall that single-use forms can be submitted only once, whereas
multi-use forms can be submitted multiple times with differ-
ent values. It may sometimes be desirable to disable all exist-
ing forms to prevent further user interactions through them.

This can be achieved using clear. This method disables
all existing forms on the client side. One use of this operation
is to implement logout behavior. After calling clear, the
client would not be able to resubmit requests using previously
received forms. Nonetheless, the application can still interact
with the client using forms created afterwards.

4.3 Templates and Variables
One may wish to go beyond basic BASS form API intro-

duced above when building sophisticated web pages. This
can be achieved using BASS templates, whose syntax is sim-
ilar to that of psp (in fact, BASS templates are implemented
by adding BASS protections on top of psp templates). Specif-
ically, a BASS template is a regular HTML page (which may
include JavaScript) with “holes” (enclosed by <% = . . .%>)
to be filled in with BASS variables. Here is a sample template
for a login page:

<!−− login.html −−>
<h3> Bank Login </h3>
<p>
<form action = “prog1.py”>
<table border = “0”>
<tr><td align = “left” colspan = “2”>

<b> Login Please </b>
</td></tr>
<tr><td width = “10%”>

Username :</td><td>
<input type = “text” name = “username”
value = “<% = username%> ”>

</td></tr>
<tr><td width = “10%”>

Password :</td><td>
<input type = “password” name = “password”
value = “ <% = password%> ”>

</td></tr>
<tr><td>

<input type = “submit” value = “Submit”>
</td></tr>
</table>
</form>

This template implements a web page in HTML, except
for the two holes (written in bold for ease of reading) left for

BASS variables username and password. Before sending
the page to user, the holes will be filled in with values of the
corresponding variables. Similarly, once the user completes
the HTML form and submits it, the corresponding variables
will get their new values from the form.

Here is some sample code on the instantiation of templates:

sp = STemplate(req,′ login.html′, [username, password])
sp.render template()
mp = MTemplate(req,′ login.html′, [username, password])
mp.render template()

STemplate is a subclass of SingleForm. It creates a single
form by plugging the list of variables (the 3rd argument) into
the template file (the 2nd argument). MTemplate is a subclass
of MultiForm, and has a similar interface. As is the case of
form objects, objects of these classes must be rendered using
render template so as to enjoy BASS protections.

As discussed previously, BASS supports volatile (global)
variables and nonvolatile (local) variables. Global variables
(implemented as server-side state) are shared by all copies of
a form, and changes in one affects the value in all. In contrast,
local variables (implemented as client-side state) are specific
to each copy of a form, thus changes in one does not affect
the value in others. This is supported using class NewVar:

NewVar(request object, global/local, variable name,
default value[optional], type[optional],
prompt[optional], follow up text[optional])

Class NewVar manages BASS variables and provides get-
ter and setter API. It takes three mandatory arguments on the
request object, the kind of the variable (global or local), and
the name of the variable. It also takes optional arguments on
default value, variable type (e.g., int, string), and text strings
to appear before and after the input field. It is up to the
programmer to use the appropriate kinds of BASS variables
(global/local) based on the specific application.

5 BASS for GAE

We are currently in the process of porting the Python BASS
library onto Google App Engine (GAE), a cloud-based plat-
form for hosting web applications on Google’s infrastructure.
GAE supports Python, but puts nontrivial restrictions on the
web applications developed using it. We now discuss some
notable aspects of the porting effort.

5.1 Web Application Framework
The BASS library discussed in Section 4 uses mod python

for its performance, versatility, and scalability [23]. A web
application deployed on GAE, on the other hand, interacts
with the web server using CGI. As a result, we must rewrite
the Python BASS library to be CGI-compliant. This can be
done using the cgi module from the Python standard library.

Fortunately, the switch from mod python to the cgi module
can be hidden by the BASS API, thus transparent to BASS



programmers. Specifically, all BASS routines take the stan-
dard mod python request object req as an argument. This
object contains rich context information about the HTTP re-
quest and server status. When porting to GAE, this parameter
can be used to hold an object compatible with the cgi module
instead. The handling of this object would be significantly
different than that of the request object, but it happens entirely
within the BASS library implementation. A BASS program-
mer simply passes the object around without having to look
into it, as is the case of the request object.

In addition, BASS templates are currently implemented us-
ing psp, which is part of mod python. For porting onto GAE,
we need to implement a replacement of (a subset of) psp in the
BASS library for variable substitution to support templates.
This is again transparent to BASS programmers.

5.2 Persistent Data

The Python BASS library uses Python’s pickle library to
manage all data that persist between requests through local
files. In contrast, GAE uses a substantially different method
for managing such data. Specifically, GAE applications run
in a secure environment with limited access to the underlying
operating systems. They use the App Engine Datastore for
the persistent storage of data instead.

The Python Datastore API consists of data modeling API
and query API. An application defines a data model describ-
ing the kind of entities and their properties, and entities are
stored by calling a put() method. Two interfaces are sup-
ported for queries: a query object interface and a query lan-
guage GQL. The porting of BASS to GAE consists of two
main tasks accordingly. One is to design a data model com-
patible to Datastore. The other is to replace local file opera-
tions with Datastore put() and query operations. Neither task
affects the BASS API; therefore, the changes required remain
transparent to BASS programmers.

6 Related Work

MAWL [1], [2] and its descendants (<bigwig> [4],
JWIG [6]) use domain-specific constructs to program web ap-
plications. They view web applications as form-based ser-
vices, and provide abstractions on some key aspects such as
web input and state management. These abstractions hide
implementation details (e.g., input validation, embedding of
continuation and state in URL), thus preventing certain pro-
gramming errors. Graunke et al. [10] propose the design and
implementation of an I/O construct for web interactions. This
construct helps to program web applications in a more tra-
ditional model of interactions, and avoids the manual saving
and restoring of control state.

Although similar in spirit to BASS on these aspects, the
above work does not provide a formal semantics with the
same security guarantees. However, security should not be
overlooked for declarative web programming—now that the
details of web interactions are hidden by new abstractions,
programmers can no longer carry out the secure coding prac-

tices by themselves. As a result, a naı̈ve application of new
abstractions could suffer from security vulnerabilities such as
CSRF. It is thus crucial that the proposed abstractions and
their implementation provide related security guarantees.

On expressiveness, MAWL and descendants enforce a strict
control flow where every form is, in the BASS terminology,
single-use. For example, users will be redirected to the be-
ginning of a session if they hit the back button. In contrast,
BASS leaves the design decision to the programmer, rather
than disabling “whimsical navigation” [12] altogether. This
flexibility is important [11], [12], [22].

We emphasize that the goal of BASS is to facilitate secure
web programming with abstractions more suitable for the do-
main. Besides having declarative support on web interactions,
single-/multi-use forms, state declarations, and history con-
trol, it is important that the features are all modeled within an
original and self-contained semantic specification. In previ-
ous work [25], we have given BASS an intuitive and formal
programming model and articulated its meta properties. This
allows programmers to fully grasp how BASS programs be-
have. The common task of following secure coding practices,
which is orthogonal to the specific application logic, is carried
out by a BASS implementation once and for all.

There has also been work developing domain-specific lan-
guages or frameworks for web programming as libraries of
existing type-safe languages. Examples include the Curry-
based server-side scripting language by Hanus [13], Haskell-
based WASH/CGI by Thiemann [22], and Smalltalk-based
Seaside by Ducasse et al. [9]. These provide useful abstrac-
tions in the form of libraries to handle some common aspects
of web programming, such as structured HTML generation,
session management, and client-server communication. How-
ever, there is no stand-alone formal semantics for the new
abstractions, although in principle the behaviors could be in-
ferred from the implementations and the semantics of the host
languages. In addition, they are tied to the host languages,
thus the ideas are not easily applicable to other languages.

Finally, some recent work [8], [19], [5] uses a unified lan-
guage or framework for web application development, au-
tomatically compiling programs into server code and client
code. Most of such work does not address security. A no-
table exception is Swift [5], which ensures confidentiality and
integrity of web application information using type annota-
tions which reflect information flow policies. The security
guarantee of Swift is largely orthogonal to those of BASS. If
programmers use proper annotations, the general information
flow guarantees of Swift can help guarding against some com-
mon vulnerabilities such as SQL injection and XSS. However,
it remains vulnerable to (it is up to the programmer to write
secure code against) others such as CSRF.

7 Conclusion and Future Work

Web applications reflect a different computation model than
conventional software, and the security issues therein deserve
careful study from the perspectives of both language prin-
ciples and practical implementations. In this paper, we re-



viewed the basic BASS ideas, presented a BASS prototype
deployed as a Python library, and discussed ongoing efforts
on porting this library onto Google App Engine. In general,
we believe web programming will benefit significantly from
the use of domain-specific abstractions, and much can be done
in the area.

BASS provides some security guarantees using a few new
abstractions. These abstractions are not meant to be “com-
plete,” and there are other desirable properties uncovered. It is
useful to explore abstractions for other areas, such as dynamic
HTML generation [13], [6], [16], [22], privilege management,
and dynamic SQL construction [20], [24].

Designed for web programming in general, BASS addresses
only common security aspects, rather than issues on the specifics
of an application. For example, directory traversal [7] (ac-
cessing the parent directory using the path “..\”) is not pre-
vented by common type-based input validation, and program-
mers must perform additional filtering. Application-specific
security analysis will still be necessary. However, with the
new abstractions closing up some common vulnerabilities and
clarifying the control flow, such analysis should be easier. In
general, the new abstractions should help the analysis, rea-
soning, and testing of web programs, because they provide
an ideal model (e.g., structured control flow, automatic state
maintenance, single well-behaved client) that is amenable to
established language techniques.
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