
New Method for Software Updating in Mobile Phones

R. Kiyohara* and S. Mii**

*Mitsubishi Electric Corporation
5-1-1, Ofuna, Kamakura-Shi, Kanagawa, 247-8501, Japan
*Information Technology R & D Center, **Nagoya Works

{Kiyohara.Ryozo@ah, Mii.Satoshi@dx}.MitsubishiElectric.co.jp

ABSTRACT

Due to the increase in cellular phone services (e.g., i-mode),
car navigation systems, and other embedded devices, it is
nowadays difficult to release devices that are bug-free.
Therefore, there is a requirement for fixing bugs after the
shipment of devices to the end-user with over-the-air (OTA)
updating of device software. In addition, new software
functions are required to be installed on the devices after
shipment. OTA updating and new software installations take
place repeatedly; this involves managing a considerable
amount of binary difference (delta), which is difficult. In
this paper, we propose a new broadcasting model for
software updating and a new method to merge two delta
versions (e.g., the delta between versions 1.00 and 1.1 and
the delta between versions 1.1 and 1.2) into one delta
version (e.g., the delta between versions 1.0 and 1.2) for
mobile devices. This paper evaluates and presents the results
of our new broadcasting model and software updating
method.

Keywords: Mobile Phone, Software Updating, Binary
Difference, Software Management, Delta

1 INTRODUCTION

In recent times, there has been a rapid increasing in the
size of the software on mobile phones equipped with a wide
range of features—such as an internet browser, email client,
camera, infrared connection, Java virtual machine, and local
wireless functions. Complex processes, such as event
handlers, require that bugs that are fixed after the shipment
of a particular product are fixed through services like MS
Windows Update to ensure that personal information is
protected from loss or leakage.

A large number of mobile phone manufacturers or carriers
provide software update services such as over-the-air (OTA)
updates or through distribution centers[1][2][3]. The time
required for these update services is very crucial. During
OTA updates, naive users may not recognize the software
updating mechanism, and may remove the battery when the
mobile phones are not being used by them. During software
updates through distribution centers, the time required for an
update determines the capacity of the service, because the
updating capacity of a distribution center is limited.

The updating time comprises the following two phases;
(1) Downloading data for updating purpose.

In several cases, binary delta techniques have been
adopted to update from old versions to new [4] [5].
Such techniques can provide the data required for
small software updates.

(2) Updating the flash memories on target devices.
Mobile phone program code is stored on flash
memories after the resolution of address references as
execute-in-place (XIP) code. In a large number of
cases, the software structure significantly influences
the size of the rewritten codes.

Because it is difficult to fix all bugs at the same time, these
updating services are repeatedly used by mobile devices,.
Moreover it is wise to assume that new bugs can be inserted.
Therefore, bug-fixing data should be broadcasted, though
the user should decide whether to update or not.

In this paper, we propose a new delta technique for
software updating services which require repeated release of
new software versions for the same mobile devices.
Furthermore, we evaluated our technique, and it yielded
good results.

2 SOFTWARE UPDATE

2.1 Software Update for Mobile Phone

Figure 1 shows a typical software update system for
mobile phones. In the development environment, a bug-
fixed software image is created and the delta data are
generated through binary delta technologies. Such systems

old version
software

new version
software

old version

Mobile Phone

new version

binary
delta

binary
delta

Development
environment

OTA

Figure 1: Software Update for the Mobile Phones

face the following challenges;
(1) Downloaded data size should be as small as possible.

To decrease the data size when rewriting the program
code for new versions, binary difference (called delta)
techniques are required [6]. Generally, the program
code for a mobile phone is stored in XIP format, which
is executed directly without using dynamic links. This
feature increases the delta size. Hence, a binary delta
technique for program code has to be adopted to reduce
the size of the delta. We present some binary delta
techniques in Section 3. During the download phase, a
user is able to use a large number of functions except
those functions that require a large amount of memory
(e.g., camera, Java applications).

(2) The time required for rewriting new software on a
mobile phone should be as small as possible

 Flash memories cannot be erased as individual pages,
but as large blocks. Figure 2 demonstrates a problem in
which a large amount of code is changed despite adding
only a single line; this is important for software
structures. During the rewriting phase, users cannot
access any function, which is similar to the BIOS
updating function in PCs. From our experience, the
long interval of time during which users cannot access
the services of their mobile phones causes them to try
to reset their phones, similar to rebooting a PC.
However, resetting during software updating destroys
the program code.

2.2 Proposed OTA Service Model

Figure 2 shows our model for OTA services that
repeatedly release new software versions. When a new
version is released, the delta data between new and old
versions are released. Currently, many services release some
delta data between the newest versions and each software
version in the mobile phone which end-user has; that is,
there are three kinds of delta which are the delta between
R2.00 and R.1.20, the delta between R2.00 and R1.10 and
the delta between R2.00 and R1.00 in the Figure 2. The

software updating services are executed only when the
device requests it. As the Software update is requested at the
same time just after new version has been released, software
updating services have to be scheduled for each mobile
phone or require a wait time.

Therefore, to overcome this problem, delta data should be
broadcasted to only those mobile devices that have not
received the delta. Moreover, software downloading and
rewriting of the flash memories should be distinguishable by
the user. Mobile devices receive the delta data, and the user
decides whether to update or not. In this proposed model,
the carrier or manufacturer cannot manage the software
versions for each devices. Therefore, deltas between the new
version and all old versions have to be broadcasted.
However, this results in a lot of traffic on the cellular
network and should be avoided.

Therefore, we propose a new software updating method to
broadcast only one kind of delta data between the newest
and previous software versions.

3 RELATED STUDIES

Currently, OTA update services can be used to reduce the
maintenance cost of the software on mobile phones [1].
Some OTA solutions have been proposed and implemented
for this purpose [2][3]. In such services, it is important to
develop technologies to achieve the following two issues;

(1) Reduction of the binary differential data between old
and new versions of program code to reduce the
amount of data downloaded OTA, and reduction of
the delta data for improving usability and reducing
the maintenance cost.

(2) Reduction of the number of pages written to flash
memories to reduce the time required for rewriting
them. This is because during the rewriting phase,
users are unable to access any other function. In most
cases, the mobile phone does not have extra flash
memories; therefore, software update functions
rewrite the program codes directly while suspending
the services.

A large number of studies on binary delta have been based
on using the diff [7] algorithm on UNIX operating systems
[8]. In the mobile computing field, these techniques are
applied to disconnected operations and synchronization for
file systems [9][10] in narrow band network environments.
Previous studies [4][5] have successfully contributed to the
development of technology for this software updating with
regard to binary images. These techniques focused on the
rules for register assignment or the address part of the
instruction code to deduce the delta size.

The time required for the rewriting phase depends on the
software structure. A large number of reference parts in the
instruction code can be changed. Moreover, when NAND
flash memories are used and their program code is
compressed, the rewriting time depends on the compression
time. In [11], attempts were made to solve this problem by
introducing a new compression algorithm.

However, these studies focused only on the size of the
delta or the rewriting time for a single time. There have been

R1.00

R1.10

R1.20

New Versions

Broadcasted
R2.00 Delta for 2.00

Broadcasted

Broadcasted

Date 1

Date 2

Date 3

R 1.00

Delta
Delta

Delta

Server Mobile Terminal

Date 1

Date 2

Date 3

Date 0

Delta for 1.20

Delta for 1.10

Delta for 2.00Delta for 2.00

Delta for 1.20

Figure 2: OTA Service Model

no studies for repeatedly downloading or rewriting updates
for a mobile phone with limited memory and bandwidth.

4 DELTA

4.1 Delta Format

In this section, we introduce the format for the binary
delta used in this paper. The format is based on the gdiff
[12] or VCDIFF [13] format. These are the standard formats
for Internet users. Figures 3 and 4 shows the basic concept
and an example of the format.

In Figure 3, area 1 is the same between both versions.
Areas 2 and 4 are the same except for the stored address.
These areas are represented in the delta as COPY commands.
The COPY command requires the original start address and
length of the area.

 Area 5 is added. Added data are represented as a data
command. A DATA command is a one-byte command, and
the command itself shows the length (e.g., DATA command
“10” means that the following 10 bytes are the new data).
Therefore, the DATA command only requires the new data.

Area 3 is deleted. However, the deleting command is not

represented because this area is rewritten by other
commands.

The size of the delta depends on the number of commands.
Let c denote the number of COPY commands, d denote the
number of DATA commands, and l denote the average
length of new data. Let the address and length information
be 4 bytes. The COPY command requires the old address
information and the length. The size of delta is then

ldcDelta  9 (1)

4.2 Updating Models

For the OTA updating model described in Section 2.2, the
delta data between the newest update and the last previous
version are broadcasted every time a new version is released.
However, the software of a device is not always the previous
last version. If the software is an older version with a
different delta, the device cannot be updated because the
software on the device is not consistent with the delta.

Therefore, there are two updating models:
(1) Store the all deltas on the device. When a user

wants to update, the delta data are applied step by

Old Version New Version

addr#0

addr#1

addr#2
addr#3

addr#4

addr#0

addr#1

addr#1+a

addr#2+a

addr#4+b

addr#2+a = addr#3+b

1 1

2

2

4
4

3

5

Figure 3: Binary difference

Delta :COPY, addr#0,(addr#1-addr#0)
DATA, a, xxxxxx
COPY,addr#1,(addr#2-addr#1)
COPY,addr#3, (addr#4-addr#3)

COPY ADDR Length DATA LengthCOPYADDRLengthADDRCOPY

1 byte commands a bytes data 1 byte commands

* A Data command shows the length itsself.

Figure 4: Format of the delta command

Delta data for each updating

1.00 1.00=>1.01

1.01 1.01=>2.00

2.00 2.00=>2.10

2.10 2.10=>3.00

1.00

1.00=>1.01

1.00

1.01=>2.00

1.00

1.00=>1.01

1.01=>2.00

1.00=>1.01

1.00

1.01=>2.00

1.00=>1.01

2.10=>3.00

Broadcasted

2.00=>2.10

1.01

1.01

2.00

1.01

2.00

2.10

Broadcasted

Broadcasted

Broadcasted

1.01

2.00=>2.10

2.00

2.10

3.00

Figure 5: Model for storing all delta data.

step (see Figure 5).
(2) Store the merged delta on the device. When the

delta is received, the new delta is merged with old
delta (see Figure 6).

In (1), the device has to keep each delta. Therefore, the
storage for updating required the amount of delta data. This
storage limits the user storage for many data (e.g., e-mails,
photos, Java applications, etc.). Moreover, updating step by
step makes the flash memories rewrite repeatedly. Therefore,
the updating process requires a long time during which the
user cannot use the mobile phone. However, the benefit is
that implementation is simple.

 In (2), the device has to keep the delta for the newest
version and the software on the devices. The delta is merged
on the device when the new delta is received. The storage
requires only one version of the delta data. However, the
merged process is complicated despite the limited resources
on the device. Therefore, we propose a new method for
merging the delta data with limited resources.

5 PROPOSED METHOD

5.1 Basic Algorithm

We propose a new method for merging the delta on a
device with limited resources. Figure 7 shows the example
of the delta for three versions. The left side is the delta
between versions 1.0 and 2.0. The right is the delta between
versions 2.0 and 3.0. Figure 8 shows the merged delta. The
first COPY command in the delta from version 2.0 to 3.0
means to copy the code from version 2.0. However, the
software version on the device is version 1.0. Therefore, the
command is divided into two. One is the COPY command,
and the other is the DATA command from the delta between
versions 1.0 and 2.0.

All commands in the delta between versions 2.0 and 3.0
should be checked and merged. The delta is merged by the
following steps:

(1) The delta data are analyzed from the top of the new
delta data, —i.e., analyzed from the low address to
the high address.

(2) DATA commands should not be changed.
(3) COPY commands have to be decided using COPY

or DATA commands by searching the old delta data
by address information—i.e., the command checks
whether the code exists on the current version or
not.

In the example shown in Figure 7, the merged delta is
shown on the right side of Figure 8 and the delta commands
are shown in the Figure 9.

There are often many changes in the address part of
instruction code. Therefore, in this checking phase, there are
many search processes. Thus, this process should be
scalable for a device with limited resources.

Delta data for each updating

1.00 1.00=>1.01

1.01 1.01=>2.00

2.00 2.00=>2.10

2.10 2.10=>3.00

Delta are merged and stored.

1.00

1.00=>1.01

1.00

1.01=>2.00

1.00

1.00=>1.01

2.00=>2.10

1.00=>2.00

1.00

Broadcasted

Merged 1.00=>2.00

Merged 1.00=>2.10

2.10=>3.00

1.00=>2.10
Merged 1.00=>3.00

Figure 6 Model for storing the merged delta

COPY

COPY

COPY

DATA

DATA

Ver. 1.0 Ver. 2.0 Ver. 2.0 Ver. 3.0

COPY

COPY

COPY

DATA

Delta between Ver.1.0 and Ver.2.0 Delta between Ver.2.0 and Ver.3.0

Figure 7: Example of delta for three versions

COPY

COPY

COPY

DATA

DATA

Ver. 1.0 Ver. 2.0 Ver. 3.0

COPY

COPY

COPY

DATA

COPY

COPY

COPY

DATA

DATA

COPY

DATA

Ver. 1.0 Ver. 3.0

a

b

c

a

b

c

0000

1000

4080

6980

7000

4200

1010

0000

1090

1000

1100

3980

1150

4200

Figure 8 : Example of merging the delta

5.2 Index Table

The delta data are commonly analyzed from the low
address portion and applied. Therefore, it does not have to
search the delta data by the address information and there
are no indexes. However, this method requires indexes. If
there are indexes for the address information, the searching
process is executed in O(log n). However, the data size of
the delta might be very large. In some case, it might be
larger than the delta itself. The size depends on the number
of commands. The address information of the new and old
versions and the size information are required for each
command. Figure 10 shows an example of the index table. It
shows that 12 bytes data are added when 4 bytes are being
addressed. From equation (1) , the delta size is

ldcDelta  21 (2)
However, the storage which the proposed method requires

is only 2.3 times of deltas in the worst case. This is because
the COPY commands require the 12 bytes information (two
address information and size information).

6 EVALUATION

In service models, usability depends on the size of the
storage required on the mobile devices, and the time for
rewriting the flash memories. During the rewriting phase,
users cannot use the mobile phones, as in Windows BIOS
updates. Therefore, it should be evaluated with this in mind.

Moreover, from the point of view for the cellular network,
the data size of broadcasted should be evaluated.

For the evaluation, we compared the total size of
broadcasting data and the required storage on the mobile
devices for the following three methods:

(a) Legacy models. The delta data for each version are
broadcasted.

(b) The delta data for recent versions are broadcasted
and updating step by step.

(c) The delta data for recent versions are broadcasted
and merged the delta on the devices.

COPY

COPY

COPY

0000

0100

0180

4080

6980

9000

DATA

DATA

10001

202069805

290040804

39001803

801002

Size of new version Address of new
version

Index table

Figure 10: Example of index table

Ver. 1.0 => Ver. 2.0
 COPY 0, 1000
 DATA 100, xxxxxx
 COPY 1000, 2980
 COPY 4200, 2800
 DATA 20, xxxxxx

Ver. 2.0 => Ver 3.0
 COPY 0, 1010
 COPY 1150, 3050
 DATA 2000, xxxxx
 COPY 6060, 940

Merged delta Ver. 1.0 => Ver. 3.0
 COPY 0,1000
 DATA 10, xxxx
 COPY 1050, 2830
 COPY 4200, 120
 DATA ……
 COPY
 DATA

Figure 9: Example of delta commands

Table 1: Software size of the mobile phones

Mobile phone name The Software Size

I 45.1MB

II 21.4MB

Data Sections are not included

Table 2: Size of the delta in mobile Phone I

Version name 2.0 3.0 4.0

1.0 127,452 128,118 155,254

2.0 714 76,171

3.0 75,498

Bytes

Table 3: Size of the delta in mobile Phone II

Version name 2.0 3.0 4.0

1.0 202,111 532,187 542,793

2.0 708,015 718,578

3.0 92.014

Bytes

6.1 Measurement

We measured these kinds of data for two types of 3G
mobile phone software running on an ARM processor. Table
1 shows the software size of the mobile phones. Software
updating is only for bug fixation. For each mobile phone, we
measured the delta information using four versions (1.0, 2.0,
3.0, and 4.0).

Tables 2 and 3 show the size of the delta between each
version. There are various delta data. For example, the delta
size between versions 2.0 and 3.0 in mobile phone I is a
very small pattern. The size of the delta between versions
2.0 and 3.0 in mobile phone II is a very large pattern.

6.2 Size of Merged Delta

Tables 4 and 5 show the size of merged delta data. The
merged deltas are expected to be larger than the direct deltas
between each version and smaller than the total sum of the
deltas.

The results are shown in Tables 6 and 7. In all cases, the
sizes of the merged delta data were smaller than the total
amount of delta data and a little larger than the sizes of the
direct delta data. However, the ratio depended on the
updating patterns. For example, the size of the delta from
version 2.0 to 3.0 in mobile phone I is very small. Therefore,
the size of merged delta was not so different from the size of
the total or direct delta.

However, in mobile phone II, the size of the merged delta
was much smaller than the total delta and only 20% larger
than the direct delta. These results were as expected.

6.3 Size of Delta Data to be Stored

Method (a) requires the storage for only recent delta data,
because the delta data for each version are always
broadcasted. Method (b) requires the total amount of delta
data because if a user attempts to update the software
version, the updating process is executed step by step.
Method (c) requires the recent delta data, which are merged
with previous delta data and the size of the index table. This
index table might be stored twice.

 In Tables 8 and 9 compare these data. For this case,
method (c) is better than method (b). In the worst case,
method (b) is better than method (c) because the data do not
include the size of indexes. However, this index size

Table 4: Size of the merged delta in mobile phone I

Version name 3.0 4.0

1.0 128,126 158,840

2.0 76,172

Bytes

Table 5: Size of the merged delta in mobile phone II

Version name 3.0 4.0

1.0 624,428 639,206

2.0 726,832

Bytes

Table 6: Evaluation of the merged delta size
 in mobile phone I

Pattern
Merged

delta
Amount of

delta
Direct
delta

1.0=>3.0 128,126 128,166 128,118

1.0=>4.0 158,840 203,664 155,254

2.0=>4.0 76,172 76,212 76,171

Bytes

Table 7: Evaluation of the merged delta size
 in mobile phone II

Pattern
Merged

delta
Amount of

delta
Direct
delta

1.0=>3.0 624,428 910,126 532,187

1.0=>4.0 639,206 1,002,140 542,793

2.0=>4.0 726,832 800,029 718,578

Bytes

Table 8: Required storage in mobile phone I

Size of required storage(Bytes)
Method

1.0=>3.0 1.0=>4.0 2.0=>4.0

(a) 128,118 155,254 76,171

(b) 128,166 203,664 76,212

 (c)* 128,126 158,840 76,172

* not include the index table

Table 9: Required storage in mobile phone II

Size of required storage(Bytes)
Method

1.0=>3.0 1.0=>4.0 2.0=>4.0

(a) 532,187 542,793 718,582

(b) 910,126 1,002,140 800,029

(c)* 624,428 639,208 726,832

* not include the index table

depends only on the number of delta commands and does
not depend on the software versions. Therefore, the size of
the delta that needs to be stored on the device does not have
to be taken care of in these three methods.

6.4 Rewriting Time

Most of the rewriting time depends on the number of
blocks which have to be erased from the flash memories.
methods (a) and (c) erase the flash memories to be rewritten
only once. However, method (b) has to erase the number of
steps. In many case, the same blocks need to be rewritten.

Method (a) and the proposed method (c) are obviously
fast. Recently, this rewriting time has been very long. Some
models in the Japanese market take more than 20 min to
rewrite flash memories. Even though there are few changes
in the program code, there are many changes in the binary
code because sliding the positions of the program code
changes the many reference pointers.

Moreover, during the rewriting phase, it is impossible to
use the mobile phone. Therefore, rewriting time is very
important for mobile phone users.

6.5 Size of Delta Data to be Broadcasted

Tables 10 and 11 show the total data size to be
broadcasted for each method. Methods (b) and (c) have the
same data size because both methods require only the delta
between the newest and the previous versions. Method (a)
requires the delta between the newest version and the
current version on the devices. Therefore, broadcasting is
not suitable. In these tables, method (a) shows the download
data size. Actually, since many current versions are
expected, the delta data for all versions are broadcasted and
the mobile devices selected the delta for their version.

Based on the data size to be broadcasted, methods (b) and
(c) are effective.

7 CONCLUSION

We proposed an OTA service model that broadcasts only
one kind delta data between the newest and previous
versions of mobile phone software. The model separates the
downloading phase (i.e., broadcasting phase) from the
rewriting phase. Users can decide whether to update or not.

In this model, it is difficult to decide which delta should
be broadcasted. We found that the mobile devices can store

the delta data. Therefore, all delta should be applied to the
flash memories when users need to update. However,
storage on mobile devices is limited and rewriting time
should be small.

Therefore, we proposed a method for merging the delta.
We compared the proposed method with the method of
updating in multiple steps. Moreover, we also compared the
simple method, wherein the delta for all versions is
broadcasted.

All methods were the equivalent in terms of required
storage, which depends on the data. The problem faced by
the proposed method was with regard to the size of the index.

 The rewriting time of the proposed method was the same
as the simple method. The rewriting time for the method for
updating in multiple steps was a serious issue.

The data size to be broadcasted for the proposed method
was the same as that for the method for updating in multiple
steps. However, the data size in the simple method was a
serious issue.

Therefore we can conclude that our proposed method can
be effectively applied to our proposed model.

In future work, we will modify this merged method to
develop a more complicated delta format. Further, we will
attempt to apply this technique to the other types of software
updating.

REFERENCES

[1] Hoshi S., Ichinose A., Nose Y, Hosokawa A, Takeichi M.,
and Yano E., “Software Update System Using Wireless
Communication,” NTT DoCoMo Technical Journal, Vol.5,
No.4, (2004), 36–43.

[2] Innopath, “Understanding Firmware over the Air-FOTA,”
http://www.innopath.com/pdf/fota.pdf.

[3] Red Bend Software, “Mobile Software Management
Solutions,” http://www.redbend.com/solutions/index.asp.

[4] Kiyohara R., Kurihara M.,Mii, S., and Kino S., “A Delta
Representation Scheme for Updating between Versions of
Mobile Phone Software,” Electronics and Communications in
Japan, Vol.90, No.7, (2007), 26–37.

[5] Terazono K. and Okada Y., “An Extended Delta Compression
Algorithm and the Recovery of Failed Updating in Embedded
Systems,” Proc. IEEE Data Compression Conference 2004,
(2004), 571.

[6] Takeichi M.,Hosokawa A.,Nasu K. ,Hoshi S, Moriyama K,
Takami T, and Terunuma K:Bug fix of mobile terminal

Table 10: Size of delta data to be broadcasted
in mobile phone I

Method 1.0=> 3.0 1.0=> 4.0 2.0=>4.0

(a) 255,570 410,824 76,885

(b) 128,166 203,664 76,212

(c) 128,166 203,664 76,212

Bytes

Table 11: Size of delta data to be broadcasted
 in mobile phone II

Method 1.0=> 3.0 1.0=> 4.0 2.0=>4.0

(a) 255,570 410,824 76,885

(b) 128,166 203,664 76,212

(c) 128,166 203,664 76,212

Bytes

software using download OTA, The Asian-Pacific Network
Operations and Manage-ment Symposium(2003) 6.3

[7] Hunt W. G. and Gzymanski G. T., “A Fast Algorithm for
Computing Longest Common Subsequences,” CACM, Vol20,
No.5, (1997), 350–353.

[8] Tichy F. W., “The string-to-string correction problem with
block moves,” ACM Trans. Computer systems，Vol.2, No.4,
(1983), 309–321.

[9] Balasubramaniam S. and Pierce B., “What is a File
Synchronaizer?,” ACM MobiCom ’98, (1998), 98–108.

[10] Tridgell A. and Mackerras P., “The rsync algorithm,”
Australian National University, TR–CS–96–05 (1996).

[11] Kiyohara R. , Mii S., Matsumoto M., Numao M. and Kurihara
S., “new method of fast compression of program code for
OTA updates in consumer devices,” IEEE Transaction on
Consumer Electronics,(2009), 812-817

[12] Hoff v. A. and Payne J., “Generic Diff Format Specification,”
http://www.w3.org/TR/NOTE-gdiff-19970901

[13] Korn D., MacDonald J., Mogul J. and Vo K., “The VCDIFF
Generic Differencing and Compression Data Format,” RFC
3284, http://tools.ietf.org/html/rfc3284

