
Congestion Control with Two Fair Allocation Modes
to Achieve RTT-Fairness

K. Ogura*, Z. Su* and J. Katto*

*Dept. of Computer Science, Waseda University

3-4-1, Okubo, Shinjuku-ku, Tokyo, 189-8555, Japan.
{ogura, katto}@katto.comm.waseda.ac.jp

ABSTRACT

This paper focuses on RTT-fairness of multip le TCP

flows over the Internet, and proposes a new congestion

control supporting RTT-fairness. Today, it is a serious

problem that the flows having s maller RTT ach ieve more

bandwidth than others when the flows having different RTT

values compete. This means that a user with longer RTT

may not be able to obtain sufficient bandwidth by the

current methods. On the other hand, recent studies on the

TCP congestion control to achieve RTT fairness are

evolving actively. An example is TCP-Libra, which contains

the RTT value in its window increase control. However, this

method does not reflect RTT increase sufficiently when

packets are buffered at a bottleneck router. Therefore, in this

paper, we separate a resource allocation problem into two

phases: fair allocation of bottleneck link capacity and that of

buffer space at the bottleneck router. We then propose a new

congestion control which switches two modes according to

observed RTT values. Experiments are carried out to

validate the proposed method and much better performances

in RTT-fairness are achieved against conventional methods.

Keywords: Networks, Transport protocol, Internet, RTT

fairness

1 INTRODUCTION

TCP (Transmission Control Protocol) is widely used in the

current network and provides end-to-end, reliable

congestion control. Although this TCP is orig inally designed

for wired networks, many researches have been studied to

extend TCP to be adapted to wireless networks [1,2].

The majority of data services from web surfing to HTTP

multimedia streaming (like YouTube and P2P streaming) in

the Internet are carried by TCP. In princip le, an AIMD

(Additive Increase and Multiplicat ive Decrease) behavior of

TCP-Reno’s congestion avoidance mechanism [3] is widely

adopted, of which equivalent rate can be estimated from

observable information (RTT and packet loss rate) [4,5].

However, since the AIMD mechanis m of o rig inal TCP-

Reno autonomously determines a sending rate according to

the self-clocking princip le, it is well-known that it suffers

from RTT unfairness. Therefore, the steady state analysis of

the case in which multi-flows having different RTT compete

on the same bottleneck link is studied in [6]. And, RTT-

fairness had been focused in many TCP papers such as TCP-

Vegas [7], FAST-TCP [8], TCP-Libra [9] and so on. Delay-

based protocols (TCP-Vegas and FAST-TCP) which use

RTT to control their window size have a crit ical problem

about friendliness with existing protocol (TCP-Reno). TCP-

Libra achieves RTT-fairness and improves friendliness with

TCP-Reno simultaneously. However, we will show that it

causes unfairness in buffer space allocation when packets

are buffered.

In this paper, we separate a resource allocation problem

into fair allocation of the bottleneck link capacity and that of

the router buffer space. We then propose a new congestion

control which switches two modes according to observed

RTT values. We combine the ideas of TCP-Libra [9], TCP-

Alpha (explained in Section 2), and TCP-Westwood

(TCPW) [10] in our proposal. We will show our approach

brings much better performances in RTT-fairness,

friendliness with TCP-Reno, and throughput efficiency. Our

simulation experiments are carried out assuming wired

networks. However, since our target covers both wired and

wireless networks, we also exp lain from the viewpoint of

wireless networks.

This paper is organized as follows: Section 2 presents

research background. Section 3 explains our analysis model

on RTT fairness. Section 4 introduces our proposal, and

Section 5 demonstrates experimental results. Finally,

Section 6 prov ides conclusions of this paper.

2 RESEARCH BACKGROUNDS

In this section, we exp lain RTT-unfairness of the AIMD

congestion control, and introduce TCP-Westwood, TCP-

Libra and TCP-Alpha, respectively.

2.1 RTT-unfairness of AIMD

A window increase rate of the AIMD congestion control

based on TCP-Reno is proportional to RTT values in

principle. The increase rates of long RTT flows are slow and

inversely proportional to RTT values. For example, [11]

provides an analytical result of RTT unfairness of the AIMD

congestion control, in which throughput ratio of two TCP

flows having different RTT values is given by

d

d

RTT

RTT

w

w

1

1

2

2

1 (1)

where wi is an average congestion window size

(corresponding to throughput) of flow i (i=1,2), RTTi is an

average RTT of flow i, and d is a constant which is

determined by the congestion control mechanis ms (e.g. d is

0.5 for TCP-Reno and BIC-TCP, 0.82 for High-speed TCP

and 1.0 for Scalable TCP). Th is equation proves RTT

unfairness, according to which TCP flows with s maller RTT

values expel TCP flows with longer RTT values.

2.2 TCP-Westwood

We mention TCPW-RE (Rate Estimation) [10] which

improves throughput efficiency in window decrement phase

when a packet loss is detected.

In congestion avoidance, the behavior of TCPW is the

same as TCP-Reno. But the decrease parameter after a

packet loss is expressed by

2
,
cwnd

cwnd
RTT

RTT
maxcwnd min (2)

where RTTmin and RTT are the minimum RTT and RTT just

before the packet loss, respectively. Due to the first term of

Eq.(2), TCPW-RE just clears the router buffer instead of

halving the congestion window and causes no vacant

capacity. Due to this fact, TCPW-RE can achieve more

throughput efficiency than TCP-Reno in lossy link, and

prevent critical reduction of window size by unexpected

packet losses which occur particularly in wireless networks.

2.3 TCP-Libra

TCP-Libra, which was proposed in [9], achieves RTT-

fairness by introducing an observed RTT value into its

window increase control.

Though the original formulation is more complicated, we

can simplify the TCP-Libra's congestion control algorithm

as
2RTTkcwnd (3)

2/cwndcwnd (4)

where k is a parameter of RTT (which is assumed to be a

constant in this paper). TCP-Libra updates its window size

using Eq.(3) as long as acknowledge packets are received

successfully. Eq.(4) is used when a packet loss is detected.

2.4 TCP-Alpha

We define "TCP-Alpha", which is a linear version of the

TCP-Libra’s algorithm briefly mentioned in [12]. TCP-

Alpha updates its congestion window size by

RTTkcwnd (5)

where k’ is a constant similar to k in Eq.(3). When a packet

loss happens, TCP-Alpha halves its window size similar to

Eq.(4).

3 ANALYSIS MODEL

We analyze single flow’s window size behavior until a

packet loss happens by overflow at a bottleneck router

buffer. Assume the network has a single bottleneck link. Let

B [pkt/s] represent the bottleneck link capacity and S [pkt]

denote the buffer size of the bottleneck router. In this model,

we use TCP-Reno, TCP-Libra and TCP-Alpha.

We separate the processes until overflow into two parts.

Fig.1 shows the window size behavior of TCP-Reno. The

first part is Model I (before buffering) where there are

residual capacity and no delay by buffering. In Model I,

window size is always less than BDP (Bandwidth Delay

Product). The second part is Model II (after buffering)

where the bottleneck link capacity is fully utilized and there

is delay by buffering. We consider this process until packet

losses happen due to overflow. We evaluate the window size

behavior from two points of view in the following

subsections.

 Congestion window

Buffering Buffer

BDP

 Model I Model II

Time

Network capacity(Link capacity+Buffer)

TCP-Reno
t1 t2

Overflow

Figure 1: The window size behavior of TCP-Reno.

3.1 Model I: before buffering

There are residual capacity on the bottleneck link and no

buffering delay in this Model I. Thereby, we can set RTT to

RTTmin. We consider a case that the window size grows up to

BDP, which is calcu lated by

BRTTBDP minRTT (6)

It is clear that BDP depends on RTT value. We define

xRTT as the increment amount of the congestion window per

RTT. Table 1 shows xRTT of each protocol. For example,

TCP-Reno updates its window size by 1 per RTT.

Table 1: Increment amount of each protocol

TCP-Reno TCP-Libra TCP-Alpha

x RTT 1 k *RTT
2 k '*RTT

We assume the case where there is residual capacity R

[pkt/s]. Let t1 represent the time until the bottleneck link is

fully utilized. Relationship between t1 and R is expressed by

minRTT

min

RTTRx
RTT

t
1 (7)

where the left term means that the number of RTT rounds

(=t1/RTTmin) is mult iplied by increment amount(=xRTT) and

the right term represents the number of packets to fill

residual capacity.

From Eq.(7), t1 is given by

RTT

min

x

RTTR
t

2

1

 (8)

Table 2: t1 of each protocol

TCP-Reno TCP-Libra TCP-Alpha

t 1 minRTTR 2
k

R

'k

RTTR min

Table 2 shows t1 calculated by using xRTT in Table 1. In

this table, since k and k’ of Eqs.(3) and (5) assume the target

rate of TCP-Reno having RTTReno min[s] which means the

minimum RTT value of TCP-Reno without buffering delay,

each parameter is given by below;

2

Re

2

11

minnoRTTRTT
k

(9)

minnoRTTRTT
k

Re

11
 (10)

These parameters are constant values in particular.

As a result, in Model I, the time until link capacity is fully

utilized is constant when TCP-Libra is implemented. The

larger RTT a flow has, the longer time it takes to fill residual

capacity in both case of TCP-Reno and TCP-Alpha.

To evaluate our model, using elapsed time t[s],

congestion window size(cwnd) is calcu lated by;

RTT

min

min x
RTT

t
RTTRBcwnd)((11)

3.2 Model II: after buffering

We consider the process from packets buffering start to

overflow at the bottleneck router buffer. There are extra

delay by buffering and we can express RTT=RTTmin+α. In

our model, we use average_RTT instead of RTT.

average_RTT is calculated as below by

k

B

xk
RTT

B

x
RTT

B

x
RTT

RTTaverage

RTT

min

RTT

min

RTT

min
)()

2
()(

_

(12)

First, buffer size is given by S [pkt] and let t2 represent the

time from buffering start to overflow happened. There is a

relationship below right before overflow;

Sx
RTTaverage

t
RTT

_
2

 (13)

where left function means that the number of RTT rounds

(=t2/average_RTT) is mult iplied by increment amount xRTT.

The function expresses the buffering size right before

overflow happened.

From Eq.(13), t2 is given by

RTT
x

SRTTaverage
t

_
2

 (14)

Since we treat RTT and average_RTT as the same value in

our model, t2 can be expressed shown in Table 3 using Table

2. Let k and k’ in this table also assume the target rate of

TCP-Reno having RTTReno, we set RTTReno=RTTReno min+α in

Eqs. (3) and (5) to trace TCP-Reno behavior considering

delay by buffering;

 2

Re

2

11

minno
RTTRTT

k

(15)

minno
RTTRTT

k
Re

11 (16)

Table 3: t2 of each protocol

TCP-Reno TCP-Libra TCP-Alpha

t 2 k

S

RTTk

S

RTTS

Table 3 shows that the larger RTT value a flow using TCP-

Reno has, the longer t ime it takes to saturate the buffer

space. In contrast, in case of TCP-Libra, the trend is the

reverse. A flow using TCP-Alpha takes constant t2

regardless of having any RTT values.

To evaluate our model, using elapsed time t[s] from

buffering start, congestion window size (cwnd) is calculated

by

RTTmin
x

RTTaverage

t
RTTBcwnd

_

 (17)

4 PROPOSAL

In this section, we present our proposal which achieves

RTT-fairness along with improving throughput efficiency

and keeping friendliness with conventional method (=TCP-

Reno). Our proposal is composed of three functions. Two of

them are in congestion avoidance and the other function is

used when packet loss is detected. Since we would like to

allocate common resources fairly to achieve RTT-fairness,

our proposal switches adaptively Libra mode and Alpha

mode accord ing to observed RTT (i.e. packet buffering

status). Using TCP-Westwood algorithm in window

reduction phase at a packet loss, our proposal keeps

efficiency (i.e. clear the router buffer) even if we use it on

wireless networks. Three functions are expressed as follows;

delaynoisthereifRTTkcwnd 2 (18)

startsbufferingtheifRTTkcwnd (19)

detectedislosspackettheif

cwnd
cwnd

RTT

RTT
maxcwnd min

2
,

(20)

where k and k’ are the parameters of RTT which determine

the standard target rate of this proposal. At first, the

proposal updates its window size same as TCP-Libra using

Eq.(18) when residual capacity exists (Model I). Next , when

RTT increase is observed (Model II), the proposal switches

the mode to update its window size similar to TCP-Alpha

using Eq.(19). Finally, when a packet loss happens, the

proposal decreases its window size similar to TCP-

Westwood using Eq.(20) and returns to the Libra mode or

the Alpha mode according to network status. Fig. 2 shows

the total behavior.

Congestion window
Network capacity(Link capacity+Buffer)

cwndloss

buffering
Buffer
(<BDP)

Proposal

BDP

Libra Alpha

0 5a 10a Time[ms]
Figure 2: The proposal congestion window behavior.

5 SIMULATIONS

sender n

sender 1

D 1[ms]

receiver 1

receiver n

D n [ms]

100[Mbps],1[ms]

1[ms]

1[ms]

RTT 1[ms]

RTT n [ms]

Figure 3: Simulation topology.

We carried out simulat ion evaluations using ns-2[13]. Fig.

3 shows simulation topology used in our experiments. There

are n-flows competing on the bottleneck link. Sender i

communicates with receiver i (i=1,2,… ,n). Each sender is

connected to 1Gbps link of which propagation delay is Di

which is varied according to RTTi. Each receiver is

connected to 1Gbps link with 1ms propagation delay. Link

speed and propagation delay of the shared (bottleneck) link

are 100Mbps and 1ms, respectively. In this simulat ion,

parameters k and k’ which assume RTT of a competing

TCP-Reno flow is 40*10
-3

[s]. We use the DropTail buffer

management at the bottleneck router. Random packet losses

also happen in the bottleneck link.

5.1 Simulation Evaluations

We evaluate the valid ity of our model introduced in

section 3. First, we demonstrate the model case using ns2

simulation and prove the validity of our model by

comparing the simulat ion results with our model. For this

purpose, we consider the behavior of two flows having

different RTTs. RTT of one flow is 40*10
-3

[s] and that of

the other is 80*10
-3

[s]. We set B as follows;

]/[33.8333
81500

10100 6

spktB

where we assumes 1500[byte] as the packet size. Let S be

equal to 500[pkt]. We use three TCP protocols, TCP-Reno,

TCP-Libra, and TCP-Alpha.

5.2 Model I Validation

When we compare Eq.(11) and simulat ion result, let R be

equal to B/2 [pkt/s]. Namely, at the starting time, a flow gets

half utilization of bottleneck link capacity. In the end t ime,

window size is equal to BDP. The window size behavior in

this period is shown in Fig.4 using ns2 simulation and in

Fig.5 calculated by Eq.(11) of our model. We add the

vertical line (t1) in these graphs which means the time when

the flow having s maller RTT (=40*10
-3

[s]) fills up the

residual capacity on the bottleneck link. In Model I, k and k’

in Eqs.(9) and (10) are set to the RTT of TCP-Reno having

40*10
-3

[s]. In Fig.4, all protocols’ flows with 40*10
-3

[s]

behave the same due to (9) and (10) which trace TCP-Reno

having 40*10
-3

[s]. t1 of these flows are about 6.5[s].

However, window size behaviors of flows with 80*10
-3

[s]

are different from the others. They show that t1 of TCP-

Reno is approximately 4 t imes longer. Since A lpha increases

its window size in the same rate of flows with 40*10
-3

[s], it

takes two times to fill up the residual capacity compared to

flows with 40*10
-3

[s]. Finally, t1 of TCP-Libra is the same

as flows with 40*10
-3

[s]. Fig. 4 obviously suggests that the

time of TCP-Libra until full utilization is constant regardless

of RTT values in Model I. Compared to Fig. 5, these graphs

reveal the same behaviors, in other word, valid ity of Model I

is proved.

BDP80

BDP40

t1

Figure 4: Congestion window size behaviors in simulation.

BDP80

BDP40

t1

Figure 5: Congestion window size behaviors in our model

(Model I).

5.3 Model II Validation

Congestion window size behaviors from buffering start to

overflow are shown in Fig.6 using ns2 simulator and in

Fig.7 using Eq.(17). The window size right before overflow

is BDP+S[pkt]. In Model II, k and k’ in Eqs.(15) and (16) are

set to the RTT of TCP-Reno with 40*10
-3

+α[s] including

delay by buffering. We add the vertical line (t2) in these

graphs which means the time when the flow having s maller

RTT (40*10
-3

[s]) reaches overflow from the buffering start.

BDP40

BDP80

t2

Figure 6: Congestion window size behaviors in simulation.

BDP40

BDP80

t2

Figure 7: Congestion window size behaviors in our model

(Model II).

In Fig.6, congestion window size behaviors show curved

lines because increment amounts in one second become

slow as the number of buffering packets increase and RTTs

increase. All protocol flows with 40*10
-3

[s] behave the same.

Each protocol flows with 80*10
-3

[s] are d ifferent. A flow

using TCP-Reno takes longer time to fill the buffer space.

TCP-Libra rapidly fills the buffer space compared to the

others. In case of TCP-Alpha, since the increment rate of

80*10
-3

[s] is the same as that of 40*10
-3

[s], it shows that t2 is

constant regardless of different RTTs in Model II.

Compared to our model Fig.7, there are no large

differences except the linearity of lines. Therefore,

simulation results support the validity of Model II.

As a result, from the verifications using our models and

simulations, it is clearly observed that TCP-Libra would

bring fair allocation of residual capacity and TCP-Alpha

would bring fair allocation of buffer space.

5.4 RTT-Fairness

The purpose of this subsection is to inspect RTT -fairness.

We evaluate RTT-fairness from three points of view. In all

cases, two flows of the same protocol (Proposal, Reno,

Libra, Alpha) run in the simulation topology shown in Fig.3.

Firstly, we consider the network status changing packet

loss rates between 10
-2

 and 10
-6

 and analyze throughput

ratios of two flows. One flow has smaller RTT (=40*10
-3

[s])

and the other flow has larger RTT (=120*10
-3

[s]). The

buffer size of the bottleneck router is 500[pkt]. Fig. 8 shows

the ratio of throughputs which is calculated by dividing

throughput of the larger RTT flow by throughput of the

smaller RTT flow. When packet loss rate is high, there is

residual capacity and packets buffering at the bottleneck

router rarely occurs. Due to this reason, network condition

with high packet loss rates is approximately the same as

Model I in section 3. Similarly, network condition with low

packet loss rates is the same as Model II where the

bottleneck link capacity is fully used and packets buffering

starts. In Fig.8, two Proposal flows equally share link

capacity in almost cases. It is observed that TCP-Reno is the

most unfair protocol in high packet loss rates (Model I). On

the contrary, TCP-Libra flows can share bottleneck link

capacity fairly in high packet loss rates. However, for low

loss rates (Model II), larger RTT flow gets more utilization

than the smaller RTT flow. Using TCP-Alpha, smaller RTT

flow gets about half utilization compared to larger RTT flow.

Throughput rate of TCP-Alpha approaches to fair sharing in

low packet loss rates. It can be also observed in TCP-Reno.

If we assume wireless networks, typical packet loss rates are

around 10
-6

~10
-3

[14]. Therefore, our proposal is expected to

bring good performance also in wireless networks.

Figure 8: Throughput ratios when packet loss rate varies.

Secondly, we focus on throughput fluctuations when

RTT value is changed. One flow has constant RTT (=40*10
-

3
[s]). RTT of the other flow varies between 20*10

-3
[s] and

120*10
-3

[s]. The rat io of throughputs of various RTTs to

throughputs of constant RTT is shown in Fig. 9. Buffer size

at the router is equal to 500[pkt]. Link packet loss rate is

equal to 10
-5

. Fig. 9 indicates that TCP-Reno and Alpha

utilize larger bandwidth as the flow has smaller RTTs. The

smaller RTT these protocols have, the faster they increase

their window sizes. TCP-Libra has the opposite trend. In

case of our Proposal, it can be noted that as varied RTT gets

larger RTT, Proposal keeps fair share. However, when we

set 20*10
-3

[s] to the value of varied RTT, Proposal behave

the same as rather TCP-Alpha than TCP-Libra. In this

scenario, since buffer size is high for small RTT, it would be

almost the same as Model II.

Figure 9: The ratios of throughputs of varied RTT flows to

throughputs of constant RTT flows (=40[ms]).

Thirdly, we evaluate RTT-fairness when changing buffer

sizes at a bottleneck router. We fixed 10
-5

 to the packet loss

rate. Two flows of s maller RTT (=40*10
-3

[s]) and larger

RTT (120*10
-3

[s]) compete. In Fig.10, throughput ratio is

calculated by dividing throughput of the flow with larger

RTT by that of the flow with smaller RTT. When the buffer

size is small, the network state approaches to Model I. The

network state approaches to Model II when the buffer size

becomes large. First, it is indicated from this graph that

throughput ratio of TCP-Reno and TCP-Alpha is almost

constant and the ratio is lower than 1. Second, the ratio of

throughput using TCP-Libra is more than 1. Finally,

Proposal keeps middle positions between TCP-Libra and

TCP-Alpha. Thus, Proposal keeps fair allocation of the

network resources. On the other hand, TCP-Libra in large

buffer size approaches to fair rate. The trend is similar in

previous simulations. This is because the RTT value is small

compared to the delay value caused by buffering so that

total delay of each flow is not so different relat ively.

2.0

Figure 10: Throughput ratios when buffer size varies.

5.5 Throughput Efficiency

In Fig. 11, throughputs of a single TCP flow are shown

along with TCP-Westwood. For the network simulation

setting, RTT is varied between 40*10
-3

[s] and 200*10
-3

[s]

and random packet loss rate is set to 10
-6

. Buffer size at the

router is constant (500[pkt]). Bottleneck bandwidth is

1[Gbps] and the other links are 2[Gbps].

0

200

400

600

800

1000

40 80 120 160 200

th
ro

u
g

h
p

u
t[

M
b

p
s
]

RTT[ms]

Reno

Westwood

Libra

Alpha

Proposal

Figure 11: Throughputs of various TCPs when RTT values

are varied.

The result shows that Proposal proves its high speed

efficiency and robustness in high speed and long delay

networks. Due to its window decrement mechanism which

halves window sizes upon a packet loss, TCP-Reno and

TCP-Alpha decrease their link utilizat ion as soon as RTTs

become larger and cannot increase their window sizes

quickly. In h igh speed and long delay networks, there are

severe effects for them. On the other hand, when RTT is

lower than 60*10
-3

[s], Proposal and TCP-Westwood achieve

more bandwidth than the others because both of them are

robust due to their window decrement mechanism when

packet loss is detected. But, in case of TCP-Westwood, its

throughput decreases suddenly when RTT is larger because

of its conservative window increment mechanis m. TCP-

Libra keeps its throughput around 400[Mbps] in spite of

RTT values.

5.6 Friendliness (Inter-Protocol Fairness)

This subsection focuses on inter-protocol fairness with

TCP-Reno. The throughputs of TCP-Reno having constant

RTT (=40*10
-3

[s]) are shown in Fig. 12 and Fig. 13 along

with those of the competing flows (Reno or Proposal)

having different RTTs. Buffer size is equal to BDP of which

RTT is between 20*10
-3

[s] and 60*10
-3

[s]. Link packet loss

rate is equal to 10
-4

.

Comparing Fig. 12 with Fig. 13, these graphs show that

the total throughput in Fig. 13 is larger than that in Fig. 12

because Proposal is efficient. Fig. 12 shows that TCP-Reno

of RTT=20*10
-3

[s] expel the bandwidth of the competing

flow. On the other hand, TCP-Reno of RTT=60*10
-3

[s]

cannot utilize bandwidth sufficiently. The throughputs of

TCP-Reno competing with Proposal are almost constant in

spite of varying RTTs. It can be said that Proposal utilizes

bandwidth efficiently without disturbing TCP-Reno

regardless of changing RTT. Namely, Proposal achieves

friendliness.

0

20

40

60

80

100

20 30 40 50 60

th
ro
u
gh
p
u
t[
M
b
p
s]

RTT[ms]

Reno

Reno
(RTT=40[ms])

Figure 12: Throughputs of a TCP-Reno flow when it

competes with TCP-Reno having different RTTs.

0

20

40

60

80

100

20 30 40 50 60

th
ro
u
gh
p
u
t[
M
b
p
s]

RTT[ms]

Proposal

Reno
(RTT=40[ms])

Figure 13: Throughputs of a TCP-Reno flow when it

competes with the proposal flow having different RTTs.

6 CONCLUSION

In this paper, we analyze the sharing process of common

resources and present new congestion control algorithm

which ach ieves RTT-fairness. Then we prove that our

proposal achieves RTT-fairness, throughput efficiency, and

friendliness with TCP-Reno. However, in case of wireless

networks, we should consider several effects (random

packet loss, RTT variation, handover) for applying our

proposal into implementation in these networks. Practically,

since our proposal requires precise RTT estimates to switch

the modes and to update its window size, it somet imes

suffers from the environments where RTT frequently

changes. As future work, we will experiment in wireless

networks and try to develop an automatic estimation method

of RTTs of competing TCP-Reno flows (or other TCP

congestion control flows) to set adaptive k and k’ in (3) and

(5).

REFERENCES

[1] G. Huston: “TCP in a wireless world,” IEEE Internet Computing, Vol.

5, No. 2, pp. 82–84, 2001.
[2] H. Balakrishnan, V. Padmanabhan, S. Sesha, and R. Katz: “A

Comparison of Mechanisms for Improving TCP Performance over
Wireless Links,” IEEE/ACM Trans. on Networking, December 1997.

[3] W. Richard Stevens: "TCP Slow Start, Congestion Avoidance, Fast
Retransmit, and Fast Recovery Algorithms," IETF RFC 2581, 1997.

[4] S.Floyd and K.Fall, “Promoting the Use of End-to-end Congestion
Control in the Internet,” IEEE/ACM Trans. on Networking, Vol. 6,

Aug.1999.
[5] J.Padhye, V.Firoiu, D.Towsley, and J.Kurose: “Modeling

TCPThroughput: A Simple Model and its Empirical Validation,”
ACM SIGCOMM 1998, Sept. 1998.

[6] H. Hisamatu, H. Ohsaki, and M. Murata. “Steady State Analysis of
TCP Connections with Different Propagation Delays”, IEICE Tech.
Report, IN2002-97, Oct.2002 (in Japanese).

[7] L.S.Brakmo and L.L.Peterson: “TCP Vegas: End-to-End Congestion

Avoidance on a Global Internet,” IEEE Journal on Selected Areas in
Commun., Vol. 13, No.8, pp.1465-1480, Oct.1995.

[8] C.Jin, D.X.Wei and S.H.Low: “FAST TCP: Motivation, Architecture,
Algorithms, Performance”, IEEE INFOCOM 2004, Mar.2004.

[9] G.Marfia et al.: “TCP -Libra: Exploring RTT Fairness for TCP,”
UCLA Comp. Science Dept. Tech. Report # UCLA-CSD TR-050037.

[10] C.Casetti, M.Gerla, S.Mascolo, M.Y.Sanadidi, and R.Wang: "TCP
Westwood: Bandwidth Estimation for Enhanced Transport over

Wireless Links", In proc. of ACM Mobicom 2001, Jul.2001.
[11] L. Xu, K. Harfoush and I. Rhee: “Binary Increase Congestion Control

(BIC) for Fast, Long Distance Networks”, in Proc. of INFOCOM
2004.

[12] S. Floyd, V.Jacobson. On Traffic Phase Effects in Packet-switched
Gateways. ACM SIGCOMM Computer Communication Review,
21(2):26-42, 1991.

[13] "ns-2 network simulator(ver.2)," http://www.mash.cs.berkley.edu/

[14] L. K. Tee: “Packet Error Rate and Latency Requirements for a
Mobile Wireless Access System in an IP Network” IEEE VETECF
2007, Oct.2007

