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ABSTRACT

Various TCPs for high-speed and long-distance networks
have been implemented in Linux and Windows Operating Sys-
tems, being readily available to Internet users. However, their
performance has been evaluated mainly through Linux servers
and clients, despite the heterogeneity of OSs in the real Inter-
net. In this report, the performance of high-speed transport
protocol flows between servers and various client OSs is in-
vestigated in realistic Internet network scenarios.

Keywords: high-speed networks, high-speed transport pro-
tocols, Linux, Windows

1 Introduction

Modern OSs implement a variety of high-speed transport
protocols to achieve efficient data transfer over large-scale
and diverse networks. For example, the default transport pro-
tocol of Linux OS is now CUBIC[1], not Standard TCP(e.g.
NewReno). Moreover, Linux implements various high-speed
transport protocols, including HSTCP, HTCP and BIC. Users
can select a protocol of choice for TCP flows via Command
Line Interface. In addition, Windows OSs implement Com-
pound TCP[2] from Vista release onwards.

So far many research groups have presented their perfor-
mance evaluation experiments towards standardization of high-
speed transport protocols. However, discussions on a method-
ology for performance evaluation across different transport
protocols have not been very fruitful. For example, most of
high-speed transport protocols, other than compound TCP,
were implemented in Linux OS first due to the open source
nature of Linux. Hence, performance evaluation of high-speed
transport protocols have been conducted mainly via Linux
servers and clients. As most clients adopt Windows OS, we
believe it is important to investigate the impact of a variety of
client OSs on the performance of TCP flows, in addition to
the high-speed protocol run at the server OS.

In this report, we investigate the performance of TCP flows
between servers and clients adopting Linux, Windows XP,
Vista and Windows 7. Because we have no access to Win-
dows code, we focus on characterizing the performance of
Windows TCP stack, without a root cause analysis.

The reminder of this paper is organized as follows. Section
2 presents related work. Section 3 describes the experimental
environment used. Section 4 presents experimental results,
and Section 5 presents a summary of our contributions.

2 Related work

HSTCP[3] was proposed in 2001 as a replacement to Stan-
dard TCP in order to tackle the problem of achieving efficient
use of resources in large-scale and diverse networks. Since
then, various high-speed transport protocols followed. Many
research groups have studied these high-speed TCP protocols
via simulation and experiments in testbed networks. Most of
these activities have been conducted based on diverse perfor-
mance measures and scenarios, making it difficult to compare
performance of various transport protocol in a common envi-
ronment. To improve this situation, an IETF draft [4] has been
published to provide common network models, scenarios and
performance measures.

Many research groups have conducted performance evalu-
ation of high-speed transport protocol via experiments[5][6].
In these activities, target protocols were implemented in Linux
first, so Linux servers and clients were adopted. In addition,
we can find activities targeting MacOSX clients in [6] and tar-
geting FreeBSD and XP as well as Linux[7]. However, these
works deal with single flow characteristics only.

In this report, we investigate how the following two as-
pects impact on the performance of TCP flows in the Internet:
(1) the type of protocols employed at the server (TCP data
sender), (2) the type of OSs at the client (TCP data receiver).

3 Experimental Setup

The network topology used in our experiments is shown
in Fig.1. We use the network emulator Hurricane II, from
PacketStorm[8], so as to configure RTT flexibly in the range
from 0[ms] to 230[ms]. In the following, we set path RTT to
180[ms], except when otherwise noted. This value represents
an RTT between Japan and the US, and was selected as an
example of a fast-long distance path. Two servers (server 1
and server 2) and two clients (client 1 and client 2) are used
to establish TCP and UDP flows using iperf[9] between them.
Although jumbo frames are supported in most Gigabit NICs,
there is no guarantee that intermediate routers will support
them. Hence, we show results for MTU size of 1500 bytes
only. The buffer size at ingress and egress switches is 64
packets, the maximum size for the switches used. The server
and receiver equipment specifications are listed in Table 1.

We target four client OSs, Linux and three Windows ver-
sions (Windows XP, Vista and Windows 7). The OS versions
are shown in Table 1. We include old versions of Windows be-
side the latest Windows 7, because legacy machines are likely
to coexist with new ones in the Internet.



As for each OS, we perform parameter tuning to achieve
high performance based on various technical information such
as [10].
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Figure 1: Network Configuration

Table 1: Equipment specifications

Server Client
OS Fedora Linux (2.6.25) Fedora Linux (2.6.29.4)

Windows XP Pro. x64 SP2
Vista Ultimate 64 bit SP2

Windows 7 Ultimate 64 bit
CPU Xeon 3.33 GHz Xeon 2.4GHz

Memory 6 GByte 2 GBytes
PCI bus 64 bits

NIC e1000

Servers run Linux OS, which implements various high-speed
transport protocols natively except for Compound TCP. Among
various high-speed transport protocols, we experiment with
Reno, CUBIC and Compound TCP in our experiments as
most TCP representatives. CUBIC is the current default TCP
algorithm in Linux and Compound TCP is implemented in
Windows (Vista, Windows 7 and Windows Server 2008). We
use the patch code for running Compound TCP on Linux in-
stead of adopting Windows Server 2008 at the server. This
patch was developed by researchers of Caltech and Microsoft,
hence it is likely that the implemented Compound TCP be
very similar to that implemented in Windows. This patch
works on Kernel 2.6.25, being used in the server side. The
latest Kernel version is used at the client side in our experi-
ments.

By monitoring SYN packets at the beginning of the TCP
session, we verify that all targeted OSs enables options such
as windows scale, Timestamp and SACK.

In order to check the status of the session path, we establish
a single UDP flow of 900[Mbps] between servers and clients
and verify that there are no losses on the connections for all
target OSs before running the experiments. From this obser-
vation, we can say the path status including end hosts in the
experimental setup shown in Fig.1 is not lossy. In the follow-
ing sections, we run experiments over clean paths.

4 Experimental Results

We show the throughput characteristics of a single flow
adopting each high-speed transport protocol in subsection 4.1
and those of two coexisting flows in subsections 4.2-4.4. Per-
formance measures are: throughput characteristics, measured
via iperf; TCP related parameters, monitored by web100[11].
The duration of each trial is 100 [sec] in the single flow sce-

nario, while it is 300[sec] in the coexisting flows one. Results
are reported as averages over five trials.

4.1 Single flow characterization

In this section, we show the throughput characteristics of a
single flow for various OS clients. First we show the through-
put characteristics in a path for various RTTs.Server Protocol: CUBIC
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Figure 2: Averaged Throughput for a Single Flow; Server
Protocol: CUBIC; Client OS: Linux, XP, Vista, Windows 7

Figure 2 shows throughput characterization of Flow 1, es-
tablished between server 1 and client 1 in Fig.1 with CUBIC
as the server high-speed transport protocol. In this scenario,
we set RTT along the path to 50, 100, 150, 180 and 200[ms].
Figure 2 shows that throughput characteristics of Linux and
Windows 7 clients are not affected by different values of RTT,
with stable average throughput around 900[Mbps]. The through-
put of XP client, on the other hand, is limited at around 200
[Mbps] for all RTTs. The characteristics of Vista client achieves
about 1.5 to 2 times of that of XP client on average. From
these results, it is obvious that clients experience different
throughputs, depending on the kind of OSs. From this result,
we can say that Linux and Windows 7 clients can download
files from Linux server over various RTT paths with stable
performance in a single flow.

Next we investigate the throughput performance of sessions
at path conditions that vary over time. In Fig 1, after 100 [s]
of a single high speed TCP flow is established between server
1 and client 1, a UDP flow of 200[Mbps], that is 20 percent
of the bottleneck link, starts data transfer for the duration of
100 [s] between server 2 and client 2. In addition, a single
TCP flow keeps its data transfer for an additional 100 [s] after
the UDP flow stops its data transfer. Figures 3 and 4 show
the average throughput characteristics with UDP flow as cross
traffic on the data transfer from Linux (CUBIC protocol) and
Windows (Compound TCP) servers.

In the cases of running CUBIC at the server, we observe
that the average throughput of a single flow (0-100[s]) is around
900 [Mbps] when the receiver OSs are Linux and Windows
7. After UDP flow starts, throughput degrades drastically for
the flows running Linux and Windows 7 at the receivers. Af-
ter UDP flow terminates, at 200 [s], sometimes (two or three
of five trials) Linux and Vista clients recover their through-
put level to 900[Mbps]. For Compound TCP protocol at the
server, Linux, Vista and Windows 7 clients sometimes (e.g.



several times of 5 trials) recover their throughput after UDP
flow exits.

When comparing the throughput performance of CUBIC
and Compound TCP servers, we observe a sharp difference
in behavior of their throughput recovery phases. Windows
7 client is sometimes able to recover its throughput level af-
ter the UDP flow is gone when the server is running Com-
pound TCP, while the client is not able to increase throughput
again when the server is running CUBIC. For all protocols,
XP and Vista clients show poor performance, similar to Fig.2
throughput performance.

We can rank the packet losses observed in UDP flow in the
following order, from higher to lower: Linux, Windows 7,
Vista, and XP. This is due to poor performance of XP/Vista,
these clients do not experience congestion when sharing the
bottleneck with UDP traffic.Server Protocol : Cubic
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Figure 3: Coexisting UDP flow (100[s]-200[s]); Server Pro-
tocol: CUBIC; Client OSs: Linux, XP, Vista, Windows 7Server Protocol : Compound
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Figure 4: Coexisting UDP flow (100[s]-200[s]); Server Pro-
tocol: Compound; Client OSs: Linux,XP,Vista,Windows 7

We further look into TCP parameters to investigate the per-
formance behavior of the various protocols. In the following,
we show TCP related parameters monitored via web100 on
the flows adopting various protocols and client OSs in the co-
existing UDP scenario during 100 to 200 [s].

Figure 5 shows the cwnd when the server adopts Reno pro-
tocol. Linux opens its cwnd quickly and keeps it high until
UDP traffic starts, at which point it reduces the cwnd. Other
clients show similar behavior at the beginning of the flow but
Vista and XP clients shrink their cwnd value even before UDP
flow starts. Windows 7 can keep the high cwnd value similar
to the case of Linux. When the UDP flow starts at 100 [s],
all clients have similar behavior in time in cwnd, that is, they
shrink cwnd and never increase again.
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Figure 5: cwnd, Server Protocol: Reno
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Figure 6:# of cumulative retransmitted packets, Server Pro-
tocol: Reno

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0  50  100  150  200  250  300

cu
m

ul
at

iv
e 

# 
of

 d
up

lic
at

ed
 A

C
K

sec

Server Protocol :Reno

Linux
XP

Vista
Windows 7

Figure 7:# of cumulative duplicated packets, Server Proto-
col: Reno

Figure 6 - 8 present cumulative# of retransmitted packets,
duplicated Acknowledgement packets and timeout adopting
Reno at the server. We observe a large number of packet re-
transmissions following duplicate ACK packets for Linux and
Windows 7 clients when the UDP flow starts its data transfer.
After the UDP flow exits, the number of retransmitted packets
continues to increase for Linux and Windows 7 clients. This
means that clients have not been able to retransmit all packets
that got lost during UDP traffic, thus, the cwnd never opens
up. As for XP client, timeout, duplicate ACK and packet re-
transmissions were observed at 10[s], where the network is



not congested yet. After that, the# of duplicate ACK pack-
ets increases but the# of retransmitted packets are flat. Thus,
XP client is not able to recover its cwnd again. Also, Vista
client starts to generate duplicate ACKs at 20[s], although the
network is not congested at that time.
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Figure 8: timeout, Server Protocol: Reno
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Figure 9: sndnxt, Server Protocol: Reno

Figure 9 shows the sndnxt pointer (the sequence number of
the next byte of data to be sent[12]) supported in the Linux
kernel, monitored via web100 at the server side. As the be-
havior of sndnxt pointer at the server is driven by ACK pack-
ets from the client, we can trace the behavior of the ACK
packets generated by the client by monitoring the sndnxt pointer.
As the counter range of sndnxt is between 0 and232, the graph
shows a max sndnxt value of232 − 1 wrapping up to 0. Dur-
ing 0 -100 [s], we observe that the increase rate of sndnxt of
Linux and Windows 7 clients are identical, while the increase
rate between Linux client and Windows clients are different,
which might be caused by different implementations of ACK
packet generation at each OS.

Figure 10 shows the cwnd when the server adopts CUBIC.
Comparing with Reno in Fig.5, CUBIC is more aggressive
in opening up its cwnd after UDP traffic is gone. Linux and
Vista clients are able to increase their cwnd after UDP flow
exits, while XP and Windows 7 clients are not able to recover
their cwnd. Figure 11 and 12 present the cumulative# of
retransmitted and duplicate ACK packets. UDP triggers too
many retransmissions, causing slow recovery for all proto-
cols. We observe that CUBIC at the server is causing a larger

number of duplicate ACKs and retransmissions than Reno as
shown in Fig 6 and 7. CUBIC tries to open up its cwnd more
quickly, even in the presence of many retransmissions. For
XP and Vista clients, we observe packet retransmissions at
the beginning of the flow even without UDP flow, when the
server protocol is CUBIC, similarly to Reno. As shown in
Fig.13, UDP flow causes timeout for Linux and Windows 7
client. However, Linux clients recovers their cwnd when UDP
traffic exits, while Windows 7 can not recover its level.
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Figure 10: cwnd, Server Protocol: CUBIC
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Figure 11:# of cumulative retransmitted packets, Server Pro-
tocol: CUBIC
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Figure 12:# of cumulative duplicated packets, Server Proto-
col: CUBIC

Figure 14 shows the cwnd when the server adopts Com-
pound TCP. Linux and Windows 7 clients have very good
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Figure 13: timeout, Server Protocol: CUBIC
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Figure 14: cwnd, Server Protocol: Compound
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Figure 15:# of cumulative retransmitted packets, Server Pro-
tocol: Compound
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Figure 16:# of cumulative duplicated packets, Server Proto-
col: Compound

cwnd behavior. That is, their cwnd reduces only when UDP
traffic is active, while XP and Vista clients do not open their
cwnd enough. UDP flow causes timeout for Linux client.
However, its clients recovers their cwnd when UDP traffic
exits. After UDP traffic is gone, the number of retransmitted
packets remain flat for Linux and Windows 7 clients as shown
in Fig. 15, which explains Linux and Windows 7 client cwnd
recovery after UDP flow is gone. XP and Vista clients start to
generate duplicate ACK packets even before UDP flow enters
the system as shown in Fig. 16, which is a similar behavior as
the case of the server running Reno and CUBIC. Moreover,
duplicate ACKs continue to increase after UDP traffic exist
the system.

From these observations, we can conclude the following
about the behavior of client OSs and protocols at the server.

• The increase of duplicate ACKs even before UDP traf-
fic start interfering with TCP sessions between servers
and XP or Vista clients indicates that there might be
some problems in clients’ delayed ACK mechanisms,
which is independent of the protocols run at the server.

• CUBIC and Compound TCP are able to open their cwnd
depending on the status of the network. However, Win-
dows 7 client is not able to recover its throughput af-
ter the UDP flow exits when the server runs CUBIC
(Fig.10), whereas it recovers its throughput when the
server runs Compound TCP (Fig.14). Comparing the
number of retransmitted packets observed in Windows
7 clients in those cases (Fig.11 and 15), we observe that
a larger number of retransmitted packets occurred when
the server runs Compound TCP, although the number of
retransmissions did not increase after the UDP flow is
gone. So, the flow is able to recover in case of the server
running Compound TCP. On the other hand, when the
server protocol is CUBIC, although the number of re-
transmitted packets at UDP flow start time is smaller
than that of the server running Compound TCP, it in-
creases after the UDP flow exits, hence the flow might
not be able to reopen its cwnd back to its previous level.

4.2 Characteristics of coexisting
intra-protocol flows

In this subsection, we examine the throughput characteris-
tics of multiple coexisting flows using a same transport proto-
col in scenarios where flows run from server 1 to client 1 and
from server 2 to client 2 with the same RTT of 180 [ms]. The
bottleneck is located at the ingress switch close to the senders
in Fig.1.

Figure 17 shows the total throughput of two flows for Linux
clients and CUBIC servers. The flows are simultaneously es-
tablished between the server - client pairs (server 1 - client 1,
server 2 - client 2) on a path with RTTs of 50, 100, 150, 180
and 200 [ms], respectively. We can see that the total through-
put of both flows is affected by the RTT experienced. That
is, the larger the RTT, the smaller the throughput of each flow
and the total throughput of two flows. In our configuration,



the total throughput of the two flows is about 80 percent of
the bottleneck link when RTT is 50[ms], while it is 40 per-
cent on the path when RTT is 200[ms]. From these results,
we can see that achieving RTT fairness among TCP flows of
various RTTs is problematic.

RTT

Linux Client, Sever Protocol : Cubic

01002003004005006007008009001000

50[ms] 100[ms] 150[ms] 180[ms] 200[ms]Throughput 
[Mbps] Flow2Flow1

Figure 17: Time averaged throughputs for various path RTT;
Server Protocol: CUBIC; Client OS: Linux

Client OS : Windows 7
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Figure 18: Average Throughput for various Server Protocols
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We also investigate the total throughput of two coexisting
flows for each client OS. Two flows, Flow 1 and Flow 2, start
their transfer simultaneously. We also have run the scenario
where Flow 2 starts its data transfer two seconds after flow
1, and found the tendencies on the performance similar to the
case of starting simultaneously. Thus, only the performance

Client OS : XP
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Figure 20: Average Throughput for various Server Protocols

of starting two flows simultaneously is presented for sake of
brevity.

First, when servers use Reno protocol, the throughput of
Windows 7 clients is very limited, as shown in Fig.18, around
50 [Mbps] for each client, with total throughput of about 100
[Mbps]. When Linux servers adopt CUBIC protocol and two
Windows 7 clients download files simultaneously, the total
average throughput is about 400 [Mbps]. When the server is
Windows running Compound TCP, the total throughput of the
two flows is about 250 [Mbps].

As for Linux client, similar tendencies are observed as of
those of Windows 7 client. Fig.19 shows the time-series through-
put characteristics of Linux client for CUBIC and Compound
TCP flows. We observe that two coexisting flows increase
and decrease their throughput repeatedly, with the range of
variation of Compound TCP flows being a little larger than
that of CUBIC flows. It can be said that this difference of
the two protocol behaviors causes the difference on average
throughput performance between the two protocols.

In case of XP and Vista clients, the total throughput of the
two flows is very limited. XP clients’ throughput is about 100
[Mbps] for CUBIC and Compound TCP protocols, as shown
in Fig.20.

Vista clients’ throughput is about twice that of XP. Similar
to the single flow scenario, throughput of XP and Vista clients
is very limited, even though their paths do not experience any
network congestion. Hence, in what follows, we investigate
whether the limited throughput might be due to losses in the
internal OSs itself, by characterizing Linux and Windows 7
clients.

4.3 Standard TCP and High-Speed transport
protocols

On end-to-end paths with 1 [Gbps] or less bandwidth, un-
fairness problems between a high-speed transport protocol
and Standard TCP is well-known in environments of Linux
clients[7]. In this section, we examine the fairness issue of
XP, Vista and Windows 7 OS clients. We focus on two sce-
narios : (1) high-speed transport protocol flow starts 2 sec-
onds after a Standard TCP flow starts (case 1), and : (2) high-
speed transport protocol starts earlier than a Standard TCP
flow (case 2).



Standard TCP starts first; Client OS :  Windows 7
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Figure 21: Coexisting Standard TCP and High-speed TCP
flows; Client OS: Windows 7
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Figure 22: Coexisting Standard TCP and High-speed TCP
flows; Client OS: XP

 0

 200

 400

 600

 800

 1000

 0  50  100  150  200  250  300

T
hr

ou
gh

pu
t[M

bp
s]

sec

RTT=180[ms], Standard TCP starts first, Client OS : Linux

Standard TCP
CUBIC

Figure 23: Time-series Throughput of coexisting Standard
TCP and CUBIC Servers, Client OS: Linux

Figure 21 shows average throughput in scenarios of Win-
dows 7 clients for case 1. When both servers adopt Standard
TCP, the total throughput of two flows is about 120[Mbps].
In case 1, where the Standard TCP flow starts first, for both
cases of CUBIC and Compound TCP protocol at the servers,
the total throughput increases as compared with two coexist-
ing standard (Reno) TCP flows. However, the throughput of
Standard TCP flow is drastically less than that observed in
coexisting two standard TCP flows. The tendencies observed
in case 2 are similar to case 1. In examining the case of two
flows starting simultaneously, we observe similar tendencies,
that is, the high-speed transport protocol flow affects the per-
formance of Standard TCP flow. In addition, comparing the
performance of the scenario where two flows coexist in the
shorter RTT path (50 [ms]) with longer RTT path (180[ms]),
the total throughput of two flows increased. Therefore, we can
say that high link utilization is achieved on scenarios where
standard TCP and high-speed transport protocol flows coex-
ist in short RTT paths. However, the throughput of Standard
(Reno) TCP flow is also affected by the high-speed transport
protocol flow for both CUBIC and Compound TCP server
protocols.

For XP clients, the average throughput for a client using
high-speed transport protocol is higher than clients using Stan-
dard TCP as shown in Fig.22. The total throughput of two
coexisting flows is limited to 100[Mbps] for all protocols.
Vista clients show the same tendencies as those of XP, with
the difference that the total throughput is around 250[Mbps]-
300[Mbps] when the server runs CUBIC and Compound TCP
and 150[Mbps] when servers run Standard TCP. Linux client
shows almost the same tendencies of that of clients running
Windows 7.

Figure 23 shows the time-series throughput characteristics
of two coexisting flows, whose servers run Standard TCP and
CUBIC, for Linux clients, when the server running Standard
TCP starts transferring data first. We can observe that the per-
formance of high-speed transport protocol flow overwhelms
that of the Standard TCP flow, even though the later starts data
transfer first. All client OSs (Linux, Windows XP, Vista and
Windows 7) for which data was transferred via servers run-
ning Standard TCP are negatively affected by the high-speed
transport protocol flows.

4.4 Coexisting client OSs

So far, we have shown the characteristics of multiple flows
in configurations where the clients adopt identical OS, e.g.
Client 1- Client 2 is Linux - Linux, XP - XP, Vista - Vista and
Windows7 - Windows7. In this subsection, we focus on sce-
narios where different client OSs coexist in the configuration
of Fig. 1. Coexisting flows start their data transfer simultane-
ously and lasts 300 [s].

Table 2 - 4 summarize the average throughput of two co-
existing flows (Client 1 / Client 2) for each protocol at the
server.



Table 2: Average Throughput (Server Protocol: Reno)
XXXXXXXClient 1

Client 2
XP Vista Windows 7 Linux

XP 19.8 / 36.2 9.5 / 99.8 27.7 / 205.7 5.6 / 230.1
Vista 99.8 / 9.5 62.6 / 51.4 42.8 / 67.1 15.4 / 307.3

Windows 7 205.7 / 27.7 67.1 / 42.8 55.6 / 62.1 15.9 / 217.2
Linux 230.1 / 5.6 307.3 / 15.4 217.2 / 15.9 55.2 / 63.1

Table 3: Average Throughput (Server Protocol: Cubic)
XXXXXXXClient 1

Client 2
XP Vista Windows 7 Linux

XP 50.0 / 50.1 48.1 / 135.5 64.2 / 232.6 48.4 / 325.8
Vista 135.5 / 48.1 70.3 / 90.1 80.7 / 96.1 140.4 / 259.3

Windows 7 232.6 / 64.2 96.1 / 80.7 195.4 / 184.3 228.9 / 267.0
Linux 325.8 / 48.4 259.3 / 140.4 267.0 / 228.9 205.4 / 205.2

Table 4: Average Throughput (Server Protocol: Compound)
XXXXXXXclient 1

client 2
XP Vista Windows 7 Linux

XP 53.0 / 46.6 6.2 / 258.4 6.1 / 341.6 3.3 / 463.1
Vista 258.4 / 6.2 94.3 / 97.8 86.6 / 119.5 87.6 / 460.9

Windows 7 341.6 / 6.1 119.5 / 86.6 131.2 / 114.4 102.5 / 221.8
Linux 463.1 / 3.3 460.9 / 87.6 221.8 / 102.5 153.6 / 147.6

In what follows, a summary of average throughput in each
scenario is shown:

• XP client and other OS clients: In all cases, XP client
can not increase its cwnd as much as the coexisting
client. The average throughput is limited to around 10-
50 [Mbps] for each protocol, while Vista client achieves
100-300 [Mbps], Window 7 client achieves 200-350
[Mbps], and Linux client reaches 200-450[Mbps].

• Vista client and other OS clients: The performance
of Vista client achieves higher throughput than a coex-
isting XP client. When Vista and Linux clients coex-
ists, Linux client achieves higher throughput than that
of Vista client. When adopting CUBIC protocol at the
server, throughput is 260 [Mbps] for the Linux client
and can download data from the server two times faster
than Vista client and five times faster (throughput is 460
[Mbps]) when adopting Compound TCP.

• Windows 7 client and other OS clients:Windows 7
client is able to download data from Linux server run-
ning CUBIC about two or three times faster than that of
the XP client. For the Windows server running Com-
pound TCP, the performance for XP client seems very
limited, while Windows 7 client reaches over 200 - 300
[Mbps] throughput. In case of coexisting Windows 7
and Vista clients, the throughput of each client is al-
most the same when using Linux server (CUBIC) and
Windows 7 (Compound TCP). That is, the throughput
of each flow is lower than 120[Mbps]. Hence when

Windows 7 and Vista clients download data simultane-
ously, the total throughput is very limited, around 200
[Mbps].

• Linux client and other OS clients When coexisting
Linux and Windows clients download data from the
servers simultaneously, Linux client gets higher through-
put than those of Windows OSs. Figure 24 shows one
of the examples, with coexisting Windows 7 and Linux
Client. Both Linux and Windows 7 clients have almost
identical performance when they download data from
the Linux server. However, when downloading data
from Windows server running Compound TCP, Linux
client gets data about two times faster than Windows
7 client. In addition, when the Windows server runs
Reno, the performance of Windows 7 client is very lim-
ited.

Client 1 : Windows 7 - Client 2 : Linux

0100200300400500

Reno CUBIC CompoundThroughp
ut [Mbps] Windows 7Linux

Figure 24: Coexisting Different OS Clients: Windows 7 -
Linux

Figures 25 - 26 show the cwnd of coexisting Windows 7
and Linux clients. From these figures, when downloading
data from the Linux server running CUBIC, both clients have
similar performance. When data is downloaded from the Win-
dows server using Compound TCP, Linux client starts up faster
than Windows 7 client and keeps higher cwnd level than that
of Windows 7 clients for a while. Then, both of them increase
and decrease their cwnd simultaneously at almost the same
level. The difference of throughput characteristics observed
between Linux and Windows 7 clients in Table 4 comes from
the superiority of the Linux client at the beginning of the flow.

From these results, we can rank the high-speed data transfer
throughput protocols in the following order, from higher to
lower: Linux, Windows 7, Vista, and XP.

5 Summary

Several high-speed transport protocols have been proposed
and implemented in various kinds of OSs, aiming at more
efficient communication in the Internet. In this report, exper-
imental results of high-speed transport protocol conducted in
an environment emulating the Internet were presented. Here
is what we have learned:

• Both transport protocols at the server and client OSs
affect performance. For example, the timing of ACK
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Figure 25: Coexisting Windows 7 and Linux Clients; Server
Protocol: CUBIC
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Figure 26: Coexisting Windows 7 and Linux Clients; Server
Protocol: Compound TCP

packet generation affects the performance of TCP flows.
This is because the congestion control and adjustment
of sending rate are driven by information in the ACK
packet stream. Thus, it is important to consider not only
the algorithm of protocol adopted at the server but also
the implementation of the client OS when analyzing the
performance of TCP flows in the Internet.

• In specific scenarios, similar performances have been
observed for Linux and Windows 7 clients. In case of
coexisting Linux and Windows 7 clients, Linux server
running CUBIC protocol provides clients with similar
performance. On Windows server running Compound
TCP, Linux clients have better performance at its start
up phase than Windows clients.

• Comparing Compound TCP running on Windows server
and CUBIC running on Linux server, in our configura-
tions, CUBIC shows stable performance in throughput
for most of the scenarios studied.

As future work, we are planning to examine a wider variety
of network resource-sharing scenarios. We are also planning
to investigate throughput performance in wired-wireless net-
work environments. Also, we are planning to run experiments
with Windows Server 2008.
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