
Evaluation of SONICA Compared with UPnP and Jini

Hiroshi Hayakawa†, Takahiro Koita‡and Kenya Sato‡

†Graduate School of Engineering, Doshisha University, dtf0712@mail4.doshisha.ac.jp
‡Department of Information Systems Design, Doshisha University, {tkoita,ksato}@mail.doshisha.ac.jp

1-3 Tatara Miyakodani, Kyotanabe-City, Kyoto, 610-0321, Japan

ABSTRACT

The current move towards a ubiquitous network society is
encouraging companies to develop various items in prepara-
tion for networking. Accordingly, home appliances that oper-
ate by themselves are beginning to be equipped with commu-
nication interfaces, and these appliances are leading the way
and illustrating next generation services. Thus, some plat-
forms for constructing home networks have been proposed,
such as DLNA, Jini, and HAVi. Although these platforms are
expected to play a large role in the spread of home networks,
most of them are based on PC-centric networks. Considering
the limited resources of embedded systems, customizability
for the end-user, and other specific home appliance require-
ments, this situation raises issues of software and hardware
complexity, cost, power consumption, and so on. The com-
plexity and latitude of services provided largely depends on
the architecture of device interaction. In this paper, we pro-
pose a new platform named SONICA (Service Oriented Net-
work Interoperability for Component Adaptation). SONICA
adopts service oriented interoperability using HTTP methods
and a more simple and flexible architecture for device interac-
tion. We also show the usefulness of SONICA as a platform
for home networks by conducting evaluations with the exist-
ing platforms; UPnP and Jini.

Keywords: Home Network, UPnP, Jini, embedded sys-
tems, interoperability, ubiquitous

1 INTRODUCTION

The current move towards a ubiquitous network society is
encouraging companies to develop various items in prepara-
tion for networking. Accordingly, home appliances that oper-
ate by themselves are beginning to be equipped with a com-
munication interface, and these applicances are leading the
way and illustrating next generation services. Thus, some
platforms for constructing home networks have been proposed,
including DLNA (Digital Living Network Alliance)[1], Jini[2],
[3], and HAVi (Home Audio/Video Interoperability)[4]. DLNA
aligns industry leaders including Microsoft, Intel, Panasonic,
and SONY, and is becoming the de facto standard. DLNA
adopts UPnP (Universal Plug & Play) Device Architecture
1.0[5] for device interoperability. Jini, which was proposed
by Sun Microsystems, is designed for use in dynamic operat-
ing environments like pervasive networks where the state of
devices changes frequently. Although these platforms are ex-
pected to play a large role in spread of home network, most

of them are based on PC-centric networks. Considering that
the available resources of each home appliance are limited
and heterogeneous, the resources required for device interac-
tion should be as small as possible in order to support many
devices. Moreover, the complex manner of the interactions
may raise issues such as cost and power consumption. Ubiq-
uitous computing is a paradigm shift where technology be-
comes virtually invisible in our lives, and the goal is that peo-
ple can access services without any conscious effort. How-
ever, some end users want to customize or build up services
as they please. From a barrier-free society view, we should
focus on customizability for the end-user. The complexity
and latitude of provided services is tied to the architecture of
device interaction. Consequently, the architecture of device
interaction should be kept simple and flexible. In this paper,
we propose a new platform named SONICA (Service Ori-
ented Network Interoperability for Component Adaptation).
SONICA adopts service oriented interoperability using HTTP
methods and a more simple and flexible architecture for de-
vice interaction. The next section discusses the requirements
of architecture for device interaction on a home network. In
the 3rd section, we talk about UPnP and Jini as major plat-
forms. In the 4th section, we discuss the design of SONICA
as a solution for issues found in existing platforms. We eval-
uate SONICA against existing platforms in the 5th section.
In the 6th section, we show a practical system constructed on
SONICA, and then conclude with a summary in the 7th sec-
tion.

2 REQUIREMENTS

In this section, we outline the requirements of architecture
for device interaction.

2.1 Simplicity

Most devices connected to home network are embedded
systems, which do not have so much resources as a PC has.
Consequently, the resources required for device interaction
should be as simple as possible in order to support many de-
vices. Moreover, complexity in device interaction may cause
issues such as cost, power consumption, and an increase in
network traffic.

2.2 Compatibility

Some devices connected to the home network have a long
service life, whereas some will be replaced by new ones in a

- 192 -

ICMU2006

short period. Even if some of the devices are replaced, the in-
teractions between the new devices and the other appliances
must be guaranteed. Generally, products produced by multi-
ple vendors are used together and must work in concert with
each other. To maintain interaction compatibility, updating
the software of all devices may be required. However, as the
number of devices connected to the network increases, it be-
comes increasingly difficult for end-users to maintain devices
and update their software. Increased network traffic is also a
concern. Compatibilities are largely determined by interfaces
of interaction. Consequently, the interaction interfaces should
have high latitude and flexibility to ensure long availability
and vendor-independence.

2.3 Customizability

Interaction among devices facilitates various kinds of ser-
vices. However, some end users want to customize or build
up services to suit their own needs. For example, a user may
want to recieve or be informed of messages by voice or sound,
while others may desire subtitles on their TV. Customizability
that allows the end-user to adjust services as they like is nec-
cessary for barrier-free environments. There are also possibil-
ities to generate a variety of other services. The customizabil-
ity of services depends on the complexity and latitude of inter-
action architecture. Consequently, the architecture for device
interaction should be kept simple and flexible.

3 EXISTING PLATFORMS

Some platforms have already been proposed for construct-
ing home networks. We introduce UPnP and Jini in this sec-
tion.

3.1 UPnP (Universal Plug & Play)

UPnP was proposed by Microsoft who aimed to apply the
concept of Plug & Play to network systems. UPnP is adopted
as a device control technology for DLNA led by Microsoft,
Intel, SONY, Panasonic, and other industrial leading vendors.
The technologies underlying UPnP Device Architecture in-
clude SOAP[6]–[9] as a remote procedure call (RPC) mecha-
nism. SOAP allows devices to offer complex and advanced
services. However, each UPnP device must have a XML
parser and must parse all communication messages described
in XML. This results in inefficiency and requires additional
software resources. In addition, because of the static inter-
faces of SOAP, it is necessary to standardize a method to con-
trol a new device upcoming in the future, whose function is
currently undefined, and to update already installed software
modules in the currently undefined device.

3.2 Jini

Jini was proposed by Sun Microsystems in 1999; they aimed
at a network plug & play especially for dynamic networks
where the resources are more volatile. For the last few years,
Jini has been attracting attention once again because of its

HMI Component

Service
Link

Service Component

Service

Service Component

HTTP H
T
T
P

Figure 1: Device Interaction

new license system and improvements in the performance of
embedded systems. In the Jini network, a server registers in-
stances of its service interface and codebase annotation using
a lookup service. Using a template that consists of service’s
interface and attributes, a client retrieves services through the
lookup service. The actual implementation of a ServiceItem,
such as an instance of service or may proxy, will be down-
loaded from the location specified in the codebase annotation
on the ServiceItem that the server supplied to the lookup ser-
vice. Thus, the service’s instance must be available on the
network, and the codebase annotation has to be set to point
to its location. The Jini network system can automatically set
up remote services. However, in order to lookup services and
re-serialize a marshalled object, clients have to know the ser-
vice’s interface in advance. This means that the Jini network
system requires interface standardization or to install a new
interface when needed. To transfer objects via the network,
management systems such as a lookup service and a code-
base are needed; this require many resources. In addition, the
increase in network traffic is also a concern. Although most
of Jini software services are written in Java and their commu-
nications are based on the Java RMI (Remote Method Invo-
cation) mechanism, Jini specifications are not constrained to
Java.

4 SONICA

To solve the above issues, we have proposed and developed
SONICA (Service Oriented Network Interoperability for Com-
ponent Adaptation) for the control and management of home
appliances over ubiquitous networks. SONICA is based on
simple HTTP protocols with WebDAV technology[10], which
is a multimedia application platform for use in embedded sys-
tem. Interaction is based on the services of each device.

4.1 Device Interaction

In SONICA, devices interact with each other using the part-
ner’s service. Figure 1 shows an outline of device interaction
in SONICA. When a device (service component) is connected
to the network, device information (including link informa-
tion for performing services) offered by the connected device
is sent to other devices. In this case, only device informa-
tion is sent and the service module is never sent. Another
device (the HMI component) generates a menu with the link
information received from the connected service component.

- 193 -

ICMU2006

Specified API

SOAP GENA SSDP

HTTP
(HTTPU, HTTPMU)

Java Spaces

codebase
Lookup
Service

HTTP

Application

Massage-based
Service Discovery

HTTP
RMI

Java

Stream
Control

ApplicationApplication

UPnP Jini SONICA

Figure 2: Module Structure of Each Platform

When a user selects a service on the menu, the HMI com-
ponent that has the menu sends a message to the requested
service component, and the service component provides the
requested service. The user does not have to know where
the service is provided from, only that it is available on the
HMI component. Devices such as HMI components do not
need to implement complex software modules such as the ser-
vice mechanism, running processes, or other machine archi-
tectures. With this kind of information based on the SONICA
mechanism, there is no need to define service control mes-
sages in advance, and there is no difference for any device,
whether the method of accessing a device is defined or unde-
fined. As a result, the system can be easily constructed with
Plug & Play while effectively using the hardware resources,
and network traffic can be suppressed. UPnP and HAVi adjust
to undefined devices by loading or updating software mod-
ules, however, it is difficult to support many kinds of devices
because the device’s resources are limited.

The SONICA interaction mechanism is based on HTTP
verbs (e.g. GET, POST, PUT, and DELETE). Services based
on HTTP verbs are simple and can be easily used with other
devices without specific software modules. In addition, we
use WebDAV technology to achieve interactions between de-
vices.

4.2 Components

In SONICA, the system is composed of a human machine
interface component (HMIC) as a GUI (graphical user inter-
face) and other components called service components (SC).
An SC consists of an HTTP server function and services pro-
vided by equipment like DVD recorders, tuners, audio am-
plifiers, and video cameras. Those services are provided to
a user after the user makes a request to an HMIC. A single
physical device may contain one or more components. Each
component keeps tabs on the device components when a de-
vice is connected or removed. To use limited bandwidth effi-
ciently, a bandwidth management mechanism is needed. A re-
source manager reserves the required bandwidth and assigns
the bandwidth according to the device’s demands. The SC
also becomes a resource manager or a DHCP server in the
network.

An HMIC that includes an XML browser function works as

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 10 20 30 40 50 60 70 80 90 100

C
o
n
s
u
m
e
d

H
e
a
p

M
e
m
o
r
y
[
K
B
]

Time[sec]

Invoked

Invoked

Invoked

UPnP
Jini

SONICA

Figure 3: Heap Memory Consumption

an interface. A user can operate SCs connected to the network
using the interface. The HMIC generates a menu from the
device information offered by the SC. It is easy to control the
components with user interfaces that have a high user affinity,
such as GUI. However, it is possible to accept a simple user
interface without graphical images (e.g. an ordinal remote
controller) to control the SCs.

5 ARCHITECTURE EVALUATION

In this section, we evaluate device control architecture of
UPnP, Jini and SONICA. Figure 2 shows the module structure
of each platform.

5.1 Implementation of UPnP, Jini and
SONICA

We implemented simple services for the evaluation of each
platform; UPnP, Jini, and SONICA. Each implemented ser-
vice just returns the current time using java.util.Date class.
For UPnP, we used CyberLink[11] for Java as protocol stacks.
In this evaluation, we adopted Xerces as an XML parser for
CyberLink, although KXML is also available.

We used Java RMI as a communication mechanism for Jini
service. To exclude the resources for service discovery, we

- 194 -

ICMU2006

Table 1: Evaluation Results of Each Platform

Platform UPnP Jini SONICA
Maximum Consumed Heap Memory more than 3000 KB 2367.5 KB 935.8 KB
Response Time (Average) 1693.9 ms 16.9 ms 10.2 ms

Figure 4: SONICA Protocol Stack over IEEE 1394

did not use a lookup service but rather the rmiregistry we de-
scribe later. We also used a local file system for codebase and
not a HTTP server.

We designed and implemented a tiny HTTP server for SON-
ICA SC. The server is based on a thread pooling model, and
can handle HTTP GET and POST requests as device control
triggers. To be fair, the adopted platforms and implemented
services are written in pure Java. Evaluation is performed on
Java 5.0.

5.2 System Evaluation

We measure the consumed heap memory size and response
time for UPnP, Jini, and SONICA. Figure 3 shows variation
in heap memory usage when each service is invoked. Table 1
shows the maximum size of the consumed heap memory and
the response time between sending the request and receiving
a response. Usage of heap memory is measured every 500
ms for 100 seconds using jstat, which is a Java VM statistic
data monitoring tool. Measurements are taken in two situa-
tions: when the service is waiting and running. The values
shown as the usage of heap memory are sums that are deliv-
ered by multiplying the consuming rate by the reserved size in
the following three generations: NEW Generation (includes
the Eden Range and Survivor Range); OLD Generation; and
Permanent Generation. The value shown as Jini includes not
only resources for the implemented service itself but also for
the rmiregistry. The service discovery mechanism is imple-
mented in quite different ways for each platform, for exam-
ple SSDP (Simple Service Discovery Protocol) on UPnP and
the Lookup Service on Jini. To make a fair comparison, the
resources used for service discovery are not included in this

evaluation.

Compared with the other two platforms, UPnP has a 1693.9
ms response time. This is attributed to the cost of parsing
each communication message described in XML. UPnP also
consumes more than 3000KB of heap memory for the XML
parser. Jini works well in the area response time, but on the
other hand, it needs much more memory for the rmiregistry.
In the RMI communication sequences, marshalled objects are
transferred so the network traffic is thought to be heavier.
On the first request, marshalled objects are transferred to the
client. However, on consecutive accesses, the cashed service
works in the client VM. So the Jini response time changes
whether it is the first request or not. In this evaluation, we
used rmiregistry and a local file system for the codebase as
Jini implementation. However, on a real Jini system with
a lookup service and a http codebase, many more resources
are needed, and the response time is thought to be longer.
Compared with UPnP and Jini, the service with SONICA re-
sponds rapidly, and the consumed memory size is less than
1MB. These results lead us to the conclusion that SONICA is
more suitable for embedded systems with limited resources.

6 EVALUATION THROUGH
APPLICATION

To evaluate SONICA in a real application environment, we
implemented a video camera controlling system with SON-
ICA on some PCs (Fedora Core 3 with customized kernel
based on 2.6.9, Pentium 4 3GHz).

- 195 -

ICMU2006

Figure 5: Legacy Device Support Mechanism

6.1 SONICA over IEEE 1394

In this study, we implemented SONICA over IEEE 1394
(a.k.a. iLink or FireWire)[12]–[14] as a network interface,
because the Ethernet is not capable of supporting the trans-
port of real-time multimedia streaming data over the network,
which is an essential function for home AV appliances. The
IEEE 1394 is a serial interface that supports up to 800Mbps
data transmission, and has an isochronous transmission mode
for real-time streaming data, as well as an asynchronous trans-
mission mode. The IEEE 1394 allows SONICA to construct
AV appliances network without a PC.

Figure 4 shows the protocol stack for SONICA. SONICA
constructs an IP network using the IPover1394[15] protocol
to achieve high affinity with a PC and the Internet. To achieve
QoS guarantees in the network, the isochronous transmission
mode is processed in the low layers up to link layer and can
be accelerated by hardware.

6.2 Supporting Legacy Device

A legacy device that does not correspond to SONICA can
made be available using a protocol conversion module (PCM).
Although PCM works as proxy, it appears SC form other
SONICA corresponding devices. Figure 5 shows how a legacy
device that uses AV/C commands is supported. In SONICA,
HTTP is adopted to transmit requests and responses. PCM
converts HTTP requests and responses into an original com-
mand acceptable for a legacy device. HTTP messages can
coexist with other control protocols like FCP (function con-
trol protocol) or data transmission because IPover1394 uses
an asynchronous transmission mode. Thus, if a device using
a PCM for AV/C commands is connected to the network, all
devices connected to the network can use the device as a PCM
function.

6.3 Camera Application with SONICA

Figure 6 shows an overview of the communication pro-
cedure within SONICA network. The system consists of a
HMIC, an SC as a content manager, and an IIDC PCM as
PCM to control the IEEE 1394 video camera (Apple iSight).

A HMIC generates a menu from device information of-
fered by the SCs. For simplicity, the HMIC directly access
the SC’s control menu. The content manager offers a ser-
vice to save images sent from other components. IIDC PCM
works as a proxy that converts HTTP requests and responses
to IIDC requests and responses for IEEE 1394 digital cam-
eras. The IIDC PCM allows iSight to connect to the SON-
ICA network. We used iSight as a legacy device. In order

HMI
Component

Content Manager
(Service Component)

IIDC PCM
(Protocol Conversion Module)

IIDC

HTTP

W
eb
DA
V

iSight
(Legacy Device)

IEEE 1394

Shot
Save
Image

Shot
Save
Image

Save
Image

Shot

Figure 6: Communication Procedure

to use the IEEE 1394 digital camera, we developed a library
named libdc1394j that controls the library called libdc1394
from Java.

On Linux, libdc1394 is available as an IIDC control li-
brary. Libdc1394 is described in C Language and is impos-
sible to use directly in Java. To use the library directly in
Java, we implemented a shared library that includes a control-
ling mechanism that is described in the native language, and
a stab that loads this library from Java using JNI (Java native
interface). This stab can be used as if it is the Java library.
Figure 7 shows a libdc1394j software stack. Libdc1394j con-
tains a stab which is an interface of libdc1394 and the origi-
nal libraries. The original libraries include the image format
translation method implemented in the native language. In
libdc1394, error handling is strongly dependent on applica-
tions, however, it is difficult to manage errors that occur in
the native methods. Thus, libdc1394j manages errors in the
native methods, and then informs the Java applications. Call
by reference is heavily used in the original source code and
JNI does not define the passing of pointer variables. In the
Java application, we handle the pointer variables as integer
variables.

Below is the working sequence of this system. (1) A user
accesses the IIDC PCM control menu that shows the func-
tions and legacy components available now. (2) The user se-
lects iSight from the menu. Using libdc1394j, the IIDC PCM
allows iSight to take a picture. (3) The captured picture and
the components providing the ’save’ function are shown in
the HMIC browser. (4)When the user selects the content man-
ager to save the image, IIDC PCM uses the content manager’s
’save function’ and transfers the picture using WebDAV. (5)
The user accesses the content manager’s control menu. (6)
The user confirms that the transferred image has been saved.

7 CONCLUSION

In this paper, we have proposed a new platform named
SONICA, which can solve the performance and memory con-
sumption issues on existing platforms (e.g. UPnP and Jini).
SONICA designed for service oriented interoperability is based

- 196 -

ICMU2006

Figure 7: Libdc1394j Software Stack

on HTTP related protocols and WebDAV technology. There-
fore, the architecture is simpler and more flexible than those
of the existing platforms. We measured response time and
memory consumption for UPnP, Jini and SONICA, and SON-
ICA responded more quickly and consumed less memory than
the other technologies. To demonstrate the advantages of
SONICA, we implemented and evaluated the SONICA sys-
tem over IEEE 1394 network to control a legacy video cam-
era through the protocol conversion module. Our evaluation
showed that SONICA is suitable for embedded systems even
with legacy devices because of its simple and flexible archi-
tecture.

REFERENCES

[1] DLNA (Digital Living Network Alliance), Overview
and Vision White Paper 2006 (2006).
http://www.dlna.org/about/dlna white paper 2006.pdf

[2] Sun Microsystems, Jini Network Technology.
http://www.sun.com/software/jini/.

[3] Jini.org, Jini Standards. http://www.jini.org/standards/.
[4] Home Audio Video Interoperability (HAVi) Organiza-

tion, White Paper, HAVi, the A/V digital network revo-
lution. http://www.havi.org/pdf/white.pdf.

[5] UPnP Forum, UPnP Device Architecture Version 1.0
(2000). http://www.upnp.org/download/UPnPDA10 20
000613.htm.

[6] W3C Recommendation, SOAP Version 1.2 Part 0:
Primer (2003). http://www.w3.org/TR/soap12-part0/.

[7] W3C Recommendation, SOAP Version 1.2 Part 1: Mes-
saging Framework (2003).
http://www.w3.org/TR/soap12-part1/.

[8] W3C Recommendation, SOAP Version 1.2 Part 2: Ad-
juncts (2003). http://www.w3.org/TR/soap12-part2/.

[9] W3C Recommendation, SOAP Version 1.2 Specifica-
tion Assertions and Test Collection (2003).
http://www.w3.org/TR/2003/REC-soap12-testcollectio
n-20030624/.

[10] Internet Engineering Task Force (IETF), HTTP Exten-
sions for Distributed Authoring and Versioning (Web-
DAV), Request for Comments (RFC) 2518 (1999).
http://www.ietf.org/rfc/rfc2518.txt.

[11] Satoshi Konno, CyberLink for Java.
http://www.cybergarage.org/net/upnp/java/index.html.

[12] IEEE, Standard for High Performance Serial Bus, IEEE
Std 1394-1995 (1995).

[13] IEEE, Standard for High Performance Serial Bus
Amendment 1, IEEE std 1394a-2000 (2000).

[14] IEEE, Standard for High Performance Serial Bus
Amendment 2, IEEE std 1394b (2002).

[15] Internet Engineering Task Force (IETF), IPv4 over
IEEE 1394, Request for Comments (RFC) 2734 (1999).
http://www.ietf.org/rfc/rfc2734.txt.

- 197 -

ICMU2006

