
Sensor Cubes: A Modular, Ultra-Compact, Power-Aware

Platform for Sensor Networks

K. Raja*, I. Daskalopoulos*, H. Diall*, S. Hailes*, T. Torfs**, C. Van Hoof** and G. Roussos***

*
 University College London, UK

{k.raja, i.daskalopoulos, d.diall, s.hailes}@cs.ucl.ac.uk
**

 IMEC, Integrated Systems Department, Belgium, {torfs, vanhoof}@imec.be

 Birkbeck College, University of London, UK, g.roussos@bbk.ac.uk

ABSTRACT

The Sensor Cube platform is an ultra-compact, modular

and power-aware way of building sensor networks; they are

based on a stackable hardware design supported by a Tiny

OS based operating environment. The Sensor Cube hardware

measures 14x14x18mm³ and features an integrated coplanar

antenna, a design that results in an ultra compact footprint. A

core characteristic of the system is that its modular design

allows for each of the radio, processor, sensing and power

management layers to be interchangeable in a Lego-like

manner. Moreover, its low power radio (based on the

2.4GHz Nordic nRF2401 design) and microcontroller (based

on the Texas Instruments MSP430) allow for very efficient

operation. The Sensor Cube operating and software

development environment is derived from Tiny OS, which

has been modified to meet the hardware requirements, in

particular by introducing a power-aware and reliable

ALOHA-type MAC protocol. In this paper we present our

experience with the Sensor Cube platform and, in particular,

the implications of its ultra-compact design on system

performance, specifically as it relates to the characteristics

and limitations of the radio unit.

Keywords: wireless sensor node, MAC protocol.

1 INTRODUCTION

In this paper, we report on the design, development a

validation of a novel sensor network platform, the so-called

Sensor Cube. Sensor Cubes are ultra-compact compared

with the currently available sensor network platforms and

provide for a modular hardware architecture which is

supported by a software runtime derived from Tiny OS. In

addition to the usual software development tools provided by

the Tiny OS tool-chain, Sensor Cubes support a power-

aware and reliable ALOHA-type MAC protocol that closely

meets the characteristics of its radio unit. We also report on

our experiences with this platform in the context of a series

of empirical evaluation studies focused on the performance

of standard multi-hop routing protocols.

This paper has the following structure: in the next section

we discuss the main ingredients of the Sensor Cube platform

with emphasis on the characteristics that set it apart from

other existing sensor network platforms. In section 3, we

briefly discuss the rationale for selecting Tiny OS as the

foundation for developing the Sensor Cube runtime and in

the following section we detail the challenges that had to be

addressed in porting to the Sensor Cube hardware. Section 5

describes the design and development of a power-aware

MAC protocol that closely meets the operational capabilities

of the wireless component and, in section 6, we discuss its

performance in specific case studies. We conclude with a

brief discussion of our findings.

2 HARDWARE PLATFORM

Sensor Cubes are built on the hardware platform recently

developed at IMEC [1, 11] which offers two distinct

advantages over the current state-of-the-art: first, it provides

for an ultra-compact design including an integrated coplanar

antenna that allows for very low power consumption; and

second, it supports pluggable modules that allow for the

physical reconfiguration of nodes to include only the

functionality required for a particular application. The

combination of these two characteristics implies that Sensor

Cubes are versatile enough to support a variety of

application scenarios within the same modular design:

- In cases where a large geographic area must be covered

with a low density sensor network a more powerful radio

could replace the less powerful short range radio that is more

suitable for indoor or body sensor network.

- In cases where high data rates and complex signal

processing functions are required, a more powerful digital

signal processor could be used.

- In cases where specific specialized sensors and associated

sensor electronics are required (for example chemical or

biosensors) they could be accommodated within this design

on a separate module.

- In cases where power beyond that provided by the battery

is necessary, or when a full power management system with

scavenging is needed, such components could also be

developed and added as separate modules.

In this section we will discuss in turn the currently

implemented modules, including processing, wireless and

sensing modules.

2.1 Overall Cube Architecture

The currently available hardware modules of the Sensor

Cube platform include the microcontroller, radio

communication, power and sensor. The prototype

implementation features these four functional blocks, each

- 164 -

ICMU2006

14x14mm2 in size printed circuit boards plugged together to

make up a four-layer stack (cf. Figure 1). The stacked

implementation using connectors was 18mm high. In an

alternative implementation of this design solder-ball

interconnections are used instead of connectors [1], thus

reducing the height of a single node to only 10mm or less,

depending on the application layers included (cf. Figure 2).

At the top of the stack is the Radio Layer, mostly occupied

by a Nordic nRF2401 2.4GHz wireless transceiver chip [6],

together with an integrated antenna. The second layer

incorporates the Texas Instruments MSP430 microcontroller

[9] which is the “heart” of the platform as it is responsible

for data processing and control. In the same layer, a

32.768kHz crystal provides a local time reference and a

clock source to the system. This layer also provides the

following features:

- Digital input/output

- 12-bit analog to digital converter (built into the MSP430)

- Universal synchronous-asynchronous receive/transmit

- Clock System and Timers

The microcontroller and radio layers together form the

core of the Sensor Cube platform and they are designed to

work closely together, a fact that justifies their physical

proximity – direct connection.

Below the Microcontroller Layer, two additional layers

provide the Power Management (layer 3) and Sensing (layer

4) features. The Power Management layer is designed in

such a way that it can accept power from an energy

harvesting device (including, but not limited to, solar cells

and vibration scavengers) so as to sustain the battery life. A

standard battery is also connected to this layer: for example,

the Varta 2-cell NiMH batteries, with a nominal voltage of

2.4V. The available sensing equipment is comprised of a

Sensirion SHT15 Temperature/Humidity sensor and a Light-

Dependent Resistor (for measuring illumination). These

commercial-off-the-shelf sensors produce accurate

measurements while consuming very little power when in

use or standby.

2.2 Nordic nRF2401 Radio Transceiver

 Of particular relevance to this work are the

characteristics of the radio module and, for this reason, we

will address it in more detail in this section. The radio

transceiver chip provides all the hardware necessary for

transmitting and receiving at the 2.4-2.5GHz ISM band in a

tiny package and is characterized by its low power

consumption, built-in power-saving modes and relatively

high bit-rates for transmission/reception (250kbps and

1Mbps). Control and configuration of the Radio is achieved

by loading to it a 15-byte configuration word (or parts of it,

depending on the changes required). The most notable

feature of the Nordic radio chip is its ability to transmit and

receive data in two different modes: the ShockBurst Mode

and the Direct Mode. The very useful DuoCeiver feature

allows simultaneous reception of two different signals,

provided that they are 8MHz apart. This means that, even

though a single antenna is used, the Radio can receive

simultaneously from two potential transmitters – in other

words, it has two channels. When in ShockBurst mode, each

of the channels can have its own address that can range from

8 to 40 bits. In Direct Mode it is the responsibility of the

software to carry out any address processing.
Finally, the Nordic nRF2401 supports the following modes

of operation (power characteristics shown in parentheses):

- Transmit Mode (13mA average at 0dBm output Power)

- Receive Mode (23mA average for both channels on)

- Configuration Mode (12uA average)

- Stand-By Mode. (12uA average)

- Power Down Mode (400nA Average)

2.3 Sensing Components

As noted earlier, for the purpose of humidity and

temperature measurement the Sensor Cubes are equipped

with the Sensirion SHT 15 [8] multi-sensor module. The

SHT15 can be configured to measure either relative

humidity with an accuracy of ±2% RH or temperature with

an accuracy of ±0.5ºC, by configuring a digital measurement

mode register. The SHT15 sensor includes a 14-bit analog to

digital converter. It provides calibrated, digitized data to the

microcontroller via a serial interface. In addition, the lower

sensor layer of a Sensor Cube contains a cadmium sulfide

Light-Dependent Resistor (LDR) to measure illumination (in

lux, after calibration with accuracy ±3%). This component is

connected to one of the eight ports of the 12-bit ADC built

into the MSP430.

This Sensor Layer based on commercial-off-the-shelf

sensors, completes the Sensor Cube as an environmental

sensing module. For other applications, different custom or

off-the-shelf sensors can be used with the Sensor Cube to

meet the requirements of the application, thanks to the

modularity and pluggability of the cube design.

Fig. 1 The four layers of the IMEC Sensor Cube hardware

platform. A 2€ coin provides a size reference.

Fig. 2 The Sensor Cube alternative hardware implementation

using solder ball interconnect technology.

- 165 -

ICMU2006

3 SOFTWARE PLATFORM

In this section, we briefly discuss the rationale for the

selection of Tiny OS as the foundation of the software

development component of the Sensor Cube platform. To

this end, the objectives of this work have been twofold: to

identify a system that offers a suitable foundation in terms

of software components and tools for further development

with the Sensor Cube hardware, while at the same time

restricting the amount of work required for developing the

new components. Several alternatives were considered,

including the standard embedded systems development

approach of low level libraries that provide a skeleton

functionality; and porting one of a number of emerging

sensor network operating systems including Tiny OS [5],

Contiki OS [2] and the Sensor Operating System [4]. We

selected TinyOS as it offers several advantages:

- It is one of the more mature sensor network platforms

and provides a rich collection of development tools, routing

protocol implementations and applications

- Tiny OS supports the MSP430 microcontroller and a

hardware abstraction layer is readily available

- Tiny OS provides a simulator that uses a probabilistic

bit error model which is relatively scalable

The first step towards supporting Tiny OS on the Sensor

Cubes related to the development of those components that

supported the operation of the Nordic radio. However, it

soon became apparent that simply supporting the standard

Tiny OS MAC protocols was inefficient for the Nordic

device as they failed to take advantage of its particular

capabilities. As a consequence, we proceeded to design and

implement an alternative.

4 TINY OS FOR SENSOR CUBES

Tiny OS has a simple mode of operation, following an

event driven paradigm: every processing step is triggered

by an event of some type and tasks triggered as a result of

such events are added to a worker queue that is processed

by the main program loop. This approach allows for a

similarly simple system building process since the full

operating system and the application are built together in

one step. The nesC [3] compiler combines all components

of the application and operating system and builds a C file

that is passed to the compiler. Thus, supporting a new

platform with Tiny OS involves modifying the following

sections of the source code tree:

- the platform independent operating system part (system),

- common interface definitions (interfaces),

- a library with commonly used functions (lib),

- platform dependent hardware definitions and access

driver functions (platform), and

- definitions for different sensor boards that can be used in

combination with the motes (sensorboard).

 After the binary is prepared and uploaded to the sensor

node, the program loads in memory and executes --- a

process that combines system and application specific

procedures. Initialization of the system components is

carried out by the so-called Bootup process, which always

starts at Main.nc with its first call to hardwareinit().

Subsequently, this function calls TOSH SET PIN

DIRECTIONS() from hardware.h, which in turn calls

macros to set the direction registers of the microcontroller

and initialize the hardware clock. Finally, the Std-

Control.init() and start() functions are called and dispatched

to all connected modules. After enabling interrupts, the

Tiny OS system kernel enters an infinite loop calling TOSH

run task() repeatedly. This function processes all pending

tasks in the queue until none is left and then enters sleep

mode until an interrupt request (IRQ) occurs. For a new

platform, two files are required to describe its architecture,

namely .platform and hardware.h. The former is described

in detail in the following section and the later is used to

assign functions to the pins of the microcontroller.

4.1 Setting up the Build Tool-Chain

The Tiny OS build tool-chain consists of the make

system, the nesC compiler driver and nesC-to-C

preprocessor. The make system provides simple ways to

compile install and otherwise manage Tiny OS programs

for different platforms, using a set of standard options. To

do this, it invokes ncc, the driver for the compiler, and other

software packaging and installation tools including uisp and

the TI loader msp430-bsl. This system is implemented as an

overlay to the GNU software development tools and

compilers and, in fact, ncc is simply a pre-processor for

nesC, with the C compiler responsible for most of the actual

work. This has significant implications for debugging as

variable and function names appear in the debugger output

with their C rather than nesC names.

 Specifying the build options so that the tool-chain will

produce correct code for the new platform is primarily the

role of the .platform file. Several more configuration files

for the tool-chain are required:

- .target files (valid make target)

- .extra files (dummy target for defining extra make

variables)

- .rules files (part of “msp” subdirectory)

Thus, the new platform name (imec) was defined, all

necessary files specifying the different aspects of the

compilation process for this platform had to be created and

added to the source code tree.

4.2 Establishing Radio Communication

 To simplify management of system development

processes, Tiny OS defines standard within the Tiny OS

Extension Proposals (TEP) [10]. Two TEPs deal with radio

- 166 -

ICMU2006

code: Radio Physical Layer and Radio Link Layer, which

provide the hardware abstraction architecture for Radio

Components implemented by Tiny OS. The Hardware

Abstraction Architecture (HAA) for radio components is

split in three separate layers: the Hardware Physical Layer

(HPL), Hardware Adaptation Layer (HAL), and Hardware

Interface Layer (HIL).

 As the basis for our implementation of the Sensor Cube

HAA components, we used software developed by

DSYS25 [7], a sensor platform based on the Atmel AVR

ATMEGA microcontroller and the Nordic nRF2401. In

particular, we re-engineered a large part of the radio

transceiver code as appropriate for our platform.

 The correct implementation of the HPL and HAL and

the actual radio communication layers was verified by

testing standard Tiny OS applications.

4.3 Supporting the Sensors

As noted earlier, the Sensor Cube prototype

implementation provides three sensing devices built into the

Sensing Module and a further temperature sensor built into

the MSP microcontroller. Supporting these sensors in Tiny

OS involved the following steps.

Sensirion SHT15 Humidity and Temperature Sensor. The

Sensirion SHT11 sensor has been used in the Telos

platform and thus a suitable driver is readily available in the

Tiny OS source code. The SHT11 employs a one-wire

protocol which is similar to the SHT15 but the latter carries

out its own analog to digital conversions. The SHT15

components which perform this conversion support the

standard ADC and ADCError interfaces of Tiny OS and

thus the implementation of a suitable driver was relatively

straightforward. This design proved robust in testing with

no problems encountered. Moreover, it provides a

consistent external view of the sensor to other Tiny OS

components and is compliant to the specifications in TEP

101: Analog-to-Digital Converters [10]. Finally, the

appropriate pin names and settings had to be configured in

hardware.h and modifications to the interrupt pin to P1.1

were made to match the SHT15 specification.

Light-dependent Resistor (LDR). Support for the 12-bit

ADC incorporated in the MSP430 is fairly mature in Tiny

OS and follows closely the hardware abstractions specified

in TEP 101. Thus, enabling the LDR of the Sensor Cube

involved a simple modification of the existing code base to

read the LDR output on input channel 0 (pin P6.0,

configured as peripheral function).

MSP430 Internal Temperature Sensor. This internal

sensor is connected to input channel 10 on the ADC and is

directly supported in the MSP430 platform.

5 MAC PROTOCOL DESIGN

Although assembling a fully functioning system has been

a critical milestone for the Sensor Cube platform, in

practice it became evident from early on that it was

necessary to design an optimized protocol stack. This task

involved the development of an energy-efficient MAC layer

that closely fits the capabilities of the radio component. In

this section, we detail the design of this protocol stack.

There are several limitations imposed by the

characteristics of the Nordic design: due to lack of a high

speed clock source, which would lead to substantially

higher power consumption, it is not possible to employ the

transceiver’s Direct Mode, which would allow for better

radio control. Moreover, in Shockburst mode, the control

header and the payload cannot exceed 32 bytes, which is

the maximum frame size. Finally, the radio configuration

word cannot be altered while the device is transmitting or

receiving data.

5.1 MAC Design Overview

Two choices were available to us in transmitting

acknowledgement packets:

• Use the same channel for ACKs as for the data.

However, ACKs are shorter than data packets, so either we

simply fit an ACK within the larger data packet and

transmit more than is necessary (wasting energy), or we use

the data width field in the configuration word of the Nordic

interface to alter the size of the Shockburst frame between

ACK and data packets. Unfortunately, the time required to

carry out this change is 1ms, which is approximately equal

to the time required to transmit a full frame at 250kbps.

• Recall that the radio component can be operated in two

separate channels, and, as we elected, to use Channel 1 to

send data (with a full frame size of 32 bytes) and Channel 2

for sending/receiving ACK packets (with a frame size of 13

bytes).

The maximum ShockBurst frame of 32 bytes includes

the ShockBurst address, the CRC and the payload requested

by the MCU. In our implementation, the payload represents

an Active Message (AM) packet constructed by the

associated TinyOS layer, and contains control header fields

and actual data sent from the application. Inevitably, the

question of fragmentation arises as a result of the limited

Shockburst frame size and the fact that the overhead

incurred by the different components allow only for 20

bytes of payload available to the application (3 bytes are

used for Shockburst address, 1 byte for CRC and 8 bytes

for AM control header). Nevertheless, taking into account

the actual data that is transmitted in a sensor network under

normal operating conditions, we decided not to address

fragmentation at this stage: applications normally would

send only a few bytes of data due to sensor readings and

some amount of control information as part of the routing

protocol. In this scenario, providing for fragmentation at

this level would mostly reduce the efficiency of the system

as it would add additional header data which would be

unnecessary for the vast majority of packets. Instead, those

- 167 -

ICMU2006

applications that require fragmentation are expected to add

it as needed.

The use of the Shockburst mode as the principal mode of

communications implies that two addresses are

encapsulated in every data packet: the Shockburst broadcast

address and a node-specific address within the AM header.

This approach allows us to combine the performance

advantages of Shockburst while at the same time retaining

the capability to address data to specific nodes and thus

maintaining unicast semantics.

The next design decision was for the receiver to use a set

duty cycle that switches the radio between stand-by and

receive mode at regular intervals, in order to reduce the

overall level of energy consumed. The amount of time the

radio stays in either mode is configurable at application

development time, and a more detailed discussion of the

implications of various choices for duty cycle can be found

in section VI.

For the same reason, we decided against using carrier

sense and, rather, elected to use a simple Aloha-based

protocol instead. In the case of carrier sense, on

transmission, the radio listens to the channel to determine if

it is used by some other station. However, if collisions are

rare, either as a result of low node density or low

transmission rates, as we expect for these nodes, then the

higher energy cost required by this approach is not justified

by a requirement for collision avoidance.

Fig.3. Flowchart describing the logic of the

Transmitter’s MAC table.

Nevertheless, it is still necessary to address the problem

of collisions whenever they arise. A further complication of

the selected solution is the fact that a receiver node may be

in stand-by mode when the transmitter is sending data and

hence unable to receive them. To address both of these

problems, we employ link level acknowledgements and

retransmissions. In this scheme, as soon as the transmitter

sends data, it waits for an acknowledgement for a set

duration of time, which is also configurable. If no

acknowledgement arrives within this time frame, then the

packet is retransmitted. Note that since the transmitter

cannot distinguish a packet which was lost due to a

collision or because the receiver was in stand-by mode, the

transmitter resends its packets until it receives an

acknowledgement or reaches the Maximum Retransmission

count (which is also configurable in application code).

Fig 4. Flowchart describing the logic of the

Receiver’s MAC table.

A further technique that we considered for inclusion in

the protocol, was RTS/CTS (Request to send/Clear to send),

which is a mechanism often used in wireless systems to

avoid the hidden and exposed terminal problems. To avoid

both of these problems, the RTS/CTS mechanism is used to

establish a session before initiating the transmission thus

removing the possibility of collision from data packets,

which can be long, to RTS/CTS packets, which are short

and therefore less likely to result in collision. In our case,

data packets are themselves not long, and so the value of

adding the RTS/CTS mechanism is at best questionable.

The hop-by-hop data forwarding which uses a unicast

transmission is protected by the link-level

acknowledgements which we introduced and

- 168 -

ICMU2006

retransmissions, and effectively addresses the hidden

terminal problem.

5.2 MAC with Idle-RQ Table Management

 The MAC layer can have no more than one

outstanding packet at any given point of time. A packet is

said to be outstanding, when it has been transmitted and not

yet acknowledged and the maximum retransmission count

has not yet been reached. Allowing multiple outstanding

packets might result in a collision (with any ALOHA based

approach) and will also increase the complexity of

sequence number management. Before performing the

actual transmission of the packet, the following checks will

be performed by the MacTable as described in the

flowchart in Figure 3. A similar table is maintained at the

receiver and its operation is highlighted in Figure 4.

Fig.5. Radio State Diagram

Fig.6. Backoff State Diagram

Fig.7. DutyCycle state diagram.

Figure 5-7 show the the various states and events that

cause state transitions within the MAC layer. In summary,

the Sensor Cube MAC provides no fragmentation, thus

eliminating the fragment header overhead; does not employ

no carrier sense; and implements a low data width

Shockburst frame for acknowledgements.

6 EVALUATION AND PERFORMANCE

ANALYSIS

 To evaluate the performance of the Sensor Cube

platform a number of experiments were carried out. In this

section we explore the behavior of the proposed MAC

protocol in the context of a controlled environment. We aim

to draw conclusions regarding the effects of different

choices of parametres regarding the duty cycle and

retransmission on the performance of the MAC protocol.

The evaluation process aimed specifically to provide an

understanding of the trade-offs involved and draw

conclusions on how different duty cycle lengths and ratios,

acknowledgements and retransmissions can affect packet

delivery ratio. The aim has been to identify the optimal set

of parametres for some application. Rather than have this

discussion in the abstract, we specifically considered the

case of data harvesting using the Surge application [5], a

simple tree-based acquisitional query engine available with

Tiny OS.

6.1 Experimental Setup

 The experiments were conducted in an environment

that supports several wireless LANs, and as a consequence

there was a significant amount of interference, as both

Sensor Cubes and the IEEE 802.11 protocol use the 2.4GHz

band. We did not investigate the case where physical

obstacles were located between the communicating nodes,

as they were found to communicate with great difficulty

even through a single wall. For the experiments, two Sensor

Cubes were used that were powered from constant voltage

sources in order to eliminate any effects that inadequate

power supply would introduce. The first sensor was

powered by a laboratory power supply, set to output 2.7V,

whereas the second was powered directly from the USB

programming board that also provided 2.7V. The sensors

were placed in positions which allowed line of sight and at

distances of 1, 6 and 12 metres. Since the aim was to

explore the impact of acknowledgements, retransmissions,

physical proximity and duty cycle lengths and ratios to

packet delivery ratio, a driver application was developed to

enable the exploration of the parametre space.
For testing, a two part application was used with a

Transmitter and a Receiver role. The transmitter sent 100

packets at a time. In the case where acknowledgements

were used, the timeout was set to 4ms. After 8

retransmissions had been attempted the transmitter moved

on to the next packet. Thus, a transmitter could potentially

send up to 800 packets if no acknowledgements were ever

received. In either case, packets were sent at regular

intervals which, on success, were 175ms.

On the receiver side, the overhead of writing data to the

USART so as to record on the laptop host was found to be

significant and interfered with the operation of the protocol.

- 169 -

ICMU2006

Therefore, it was decided to minimize communication to

and from the laptop by maintaining the received packet

count in a dedicated variable in the receiving Sensor Cube’s

memory, the value of which was not transmitted until the

end of the packet transmission cycle. Since the number of

packets could vary, a watchdog timer was used to flag an

upper threshold. The timer itself did not affect the

performance of the protocol. The experiments conducted

involved measurements of both the transmission and

reception sides.

6.2 Experiment Analysis

 Two sets of experiments were conducted. In the first

case, acknowledgements and retransmissions were disabled

in order to give a baseline measurement. The transmitter

and receiver were placed 6 metres apart and 100 Shockburst

packets were transmitted, with different duty cycle periods

at the receiver. For each duty cycle value, the experiment

was repeated three times and the average packet delivery

ratio was recorded. The results are shown in Figure 8.

Fig. 8. Packet Delivery ratio with disabled

acknowledgements

From the graph of Figure 10 can be seen that a 62% duty

cycle wake time the packet delivery ratio seems to be

relatively high (93%), but if the wake time is decreased, the

packet delivery ratio is reduced before it rises again. The

intermediate reduction is the result of a misalignment

between transmission periods and reception periods, and

the increase simply a synchronization effect. Hence, to

achieve a packet delivery ratio of at least 90%, the receiver

must have a duty cycle of no less than 60% wake time (and

thus 40% sleep time).

 In the second set of experiments, the same setup was

used as for the first set;. however, acknowledgements and

retransmissions were enabled. From Figure 9, it is clear that,

in spite of very low wake time in the duty cycle (25% wake

time) the packet delivery ratio remained high at 96%. Thus,

this version of the MAC protocol smoothes out the

synchronization effects seen in the previous experiment, in

addition to providing reliable delivery. At first glance, this

approach also appears to save energy, since the receiving

node can remain off for a greater proportion of the runtime.

However, reality is not quite so simple: acknowledgements

and retransmissions also require energy for both parties as

both nodes must be enabled, though only for the relatively

short time window in which an ACK is generated. Likewise,

to raise the packet delivery ratio from the one shown in

Figure 8 to that of Figure 9, retransmissions have clearly

happened. In fact, for a 30% duty cycle, around three

retransmissions will be needed to raise delivery rate from

33% to 97%. Although, such communication also has a

considerable energy cost associated with it, this cost is

borne by the transmitter rather than the receiver. Thus, the

addition of ACKs will tend to move energy consumption

away from the receiver and towards the transmitter.

Fig 9. Packet Delivery ratio with ACKs enabled.

The true picture of energy costs requires careful

consideration of the number of retransmissions needed for a

packet to be received at a given duty cycle. However, this is

also not simple, for the same reasons of synchronization

that lead to the non-monotonicity of the first experiment.

Thus, a third set of experiments were conducted, again to

observe packet delivery ratios, but this time by choosing

different sleep/wake cycle durations at the receiver, though

all with the same proportion of wake time (37.2%) to sleep

time (62.5%) and without ACKs enabled. The recorded

values are plotted in Figure 10. Even with the same duty

cycle, synchronization effects between sending and

receiving windows cause widely varying delivery ratios and,

consequently, widely different energy consumption figures.

Further work is required in this area. Nevertheless, it is

our contention that if transmissions are irregular, then the

inherent randomness in the synchronization would tend to

avoid a situation of persistently low delivery ratio. If, on the

other hand, the transmissions are regular, as in the

experiments above, various alternative approaches to

increasing delivery rates should be considered. An initial

- 170 -

ICMU2006

phase in which ACK and retransmission occurred could be

used to understand how accurate was the synchronization

(provided that the receiver knew that a packet were a

retransmission, something that would cost an extra bit), and

thus drive the receiver towards synchronization with the

transmitter. The situation is more complex in the case of

multiple transmitters, but the process can be repeated for

different receive windows. All of these have impacts on the

energy consumed, leading to a rather complex picture.

Fig.10. Packet Delivery ratio with different cycle durations

(in ms). Duty cycle is 37.5% awake in one contiguous

period.

Finally, it must be noted that these experiments are

intimately related to the application in question. Thus, in

realistic deployment scenarios, a fine tuning step would be

required to identify the optimal wake up/sleep cycle which

best balances data quality requirements and energy

consumption.

7 CONCLUSIONS

The Sensor Cube is a new sensor network platform based

on IMEC’s ultra-compact, modular sensor hardware. The

modularity of the design allows for increased flexibility in

tailoring node capabilities to the application at hand and

also provides a coplanar antenna. A software development

environment based on Tiny OS complements the hardware

thus providing a complete platform for the development of

sensor network systems. To this end, a simple, reliable,

ALOHA based, power efficient MAC protocol with

appropriate duty cycle management has been introduced to

closely meet the requirement and limitations of the

hardware. Empirical evidence suggests a high packet

delivery ratio (above 95%) with relatively low radio duty

cycles (25% active). Multi-hop routing protocols bundled

with Tiny OS have been shown to operate effectively on

top of the Sensor Cube radio stack, and were tested

experimentally and in simulations.

REFERENCES

[1] K. Baert, B. Gyselinckx, T. Torfs, V. Leonov, F.

Yazicioglu, S. Brebels, S. Donnay, J. Vanfleteren, C.

Van Hoof, “Technologies for highly miniaturized

autonomous sensor networks”, First International

Workshop on Advances in Sensors and Interfaces

(IWASI), Bari, Italy, April, 2005.

[2] A. Dunkels, B. Gronvall and T. Voigt, “Contiki - a

Lightweight and Flexible Operating System for Tiny

Networked Sensors”, First IEEE Workshop on

Embedded Networked Sensors (EMNETS-I), Tampa,

Florida, USA, 16 November, 2004.

[3] D. Gay, P. Levis, R. von Behren, M. Welsh, E.

Brewer, and D. Culler, “The nesC Language: A

Holistic Approach to Networked Embedded Systems”,

Proc. Programming Language Design and

Implementation (PLDI) 2003, San Diego, California,

USA, 8-11 June, 2003.

[4] C. Han, R. Rengaswamy, R. Shea, E. Kohler, and M.

Srivastava, “A dynamic operating system for sensor

networks”, Proc. of the Third International Conference

on Mobile Systems, Applications, and Services

(MOBISYS), Seattle, Washington, USA, 6-9 June,

2005.

[5] P. Levis, S. Madden, D. Gay, J. Polastre, R. Szewczyk,

A. Woo, E. Brewer and D. Culler, “The Emergence of

Networking Abstractions and Techniques in TinyOS,”

Proc. First USENIX/ACM Symposium on Networked

Systems Design and Implementation (NSDI 2004),

San Fransisco, California, USA, 29-31 March, 2004.

[6] Nordic Semiconductor, “nRF2401A Single Chip 2.4

GHz Radio Transceiver”, Available online at

http://www.nordicsemi.no/files/Product/data_sheet/nRF2

401A_rev1_0.pdf..

[7] B. O'Flynn, A. Barroso, S. Bellis, J. Benson, U.

Roedig, K. Delaney, J. Barton, C. Sreenan, and S.

O'Mathuna. “The Development of a Novel

Miniaturized Modular Platform for Wireless Sensor

Networks.” Proc. IPSN Track on Sensor Platform,

Tools and Design Methods for Networked Embedded

Systems (IPSN2005/SPOTS2005), Los Angeles, USA,

IEEE Computer Society Press, April 2005.

[8] Sensirion, “SHT1x/SHT7x Humidity & Temperature

Sensor”, Available online at

http://www.sensirion.com/images/getFile?id=25.

[9] Texas Instruments, “ MSP430x1xx Family User’s

Guide”, Available online at http://ti.com/msp430

[10] Tiny OS 2.0 Working Groups. Documents

available at:

http://www.tinyos.net/scoop/special/working_group_ti

nyos_2-0

[11] T. Torfs, C. Van Hoof, S. Sanders, C. Winters, and

S. Brebels, “Wireless network of autonomous

environmental sensors”, IEEE Sensors Conference,

Vienna, Austria, April, 2004.

- 171 -

ICMU2006

