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ABSTRACT

The Sensor Cube platform is an ultra-compact, modular 

and power-aware way of building sensor networks; they are 

based on a stackable hardware design supported by a Tiny 

OS based operating environment. The Sensor Cube hardware 

measures 14x14x18mm³ and features an integrated coplanar 

antenna, a design that results in an ultra compact footprint. A 

core characteristic of the system is that its modular design 

allows for each of the radio, processor, sensing and power 

management layers to be interchangeable in a Lego-like 

manner. Moreover, its low power radio (based on the 

2.4GHz Nordic nRF2401 design) and microcontroller (based 

on the Texas Instruments MSP430) allow for very efficient 

operation. The Sensor Cube operating and software 

development environment is derived from Tiny OS, which 

has been modified to meet the hardware requirements, in 

particular by introducing a power-aware and reliable 

ALOHA-type MAC protocol. In this paper we present our 

experience with the Sensor Cube platform and, in particular, 

the implications of its ultra-compact design on system 

performance, specifically as it relates to the characteristics 

and limitations of the radio unit.  

Keywords: wireless sensor node, MAC protocol. 

1 INTRODUCTION

In this paper, we report on the design, development a 

validation of a novel sensor network platform, the so-called 

Sensor Cube. Sensor Cubes are ultra-compact compared 

with the currently available sensor network platforms and 

provide for a modular hardware architecture which is 

supported by a software runtime derived from Tiny OS. In 

addition to the usual software development tools provided by 

the Tiny OS tool-chain, Sensor Cubes support a power-

aware and reliable ALOHA-type MAC protocol that closely 

meets the characteristics of its radio unit. We also report on 

our experiences with this platform in the context of a series 

of empirical evaluation studies focused on the performance 

of standard multi-hop routing protocols. 

This paper has the following structure: in the next section 

we discuss the main ingredients of the Sensor Cube platform 

with emphasis on the characteristics that set it apart from 

other existing sensor network platforms. In section 3, we 

briefly discuss the rationale for selecting Tiny OS as the 

foundation for developing the Sensor Cube runtime and in 

the following section we detail the challenges that had to be 

addressed in porting to the Sensor Cube hardware. Section 5 

describes the design and development of a power-aware 

MAC protocol that closely meets the operational capabilities 

of the wireless component and, in section 6, we discuss its 

performance in specific case studies. We conclude with a 

brief discussion of our findings. 

2 HARDWARE  PLATFORM 

Sensor Cubes are built on the hardware platform recently 

developed at IMEC [1, 11] which offers two distinct 

advantages over the current state-of-the-art: first, it provides 

for an ultra-compact design including an integrated coplanar 

antenna that allows for very low power consumption; and 

second, it supports pluggable modules that allow for the 

physical reconfiguration of nodes to include only the 

functionality required for a particular application. The 

combination of these two characteristics implies that Sensor 

Cubes are versatile enough to support a variety of 

application scenarios within the same modular design: 

- In cases where a large geographic area must be covered 

with a low density sensor network a more powerful radio 

could replace the less powerful short range radio that is more 

suitable for indoor or body sensor network. 

- In cases where high data rates and complex signal 

processing functions are required, a more powerful digital 

signal processor could be used. 

- In cases where specific specialized sensors and associated 

sensor electronics are required (for example chemical or 

biosensors) they could be accommodated within this design 

on a separate module. 

- In cases where power beyond that provided by the battery 

is necessary, or when a full power management system with 

scavenging is needed, such components could also be 

developed and added as separate modules.  

In this section we will discuss in turn the currently 

implemented modules, including processing, wireless and 

sensing modules. 

2.1 Overall Cube Architecture 

The currently available hardware modules of the Sensor 

Cube platform include the microcontroller, radio 

communication, power and sensor. The prototype 

implementation features these four functional blocks, each 
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14x14mm2 in size printed circuit boards plugged together to 

make up a four-layer stack (cf. Figure 1). The stacked 

implementation using connectors was 18mm high. In an 

alternative implementation of this design solder-ball 

interconnections are used instead of connectors [1], thus 

reducing the height of a single node to only 10mm or less, 

depending on the application layers included (cf. Figure 2).  

At the top of the stack is the Radio Layer, mostly occupied 

by a Nordic nRF2401 2.4GHz wireless transceiver chip [6], 

together with an integrated antenna. The second layer 

incorporates the Texas Instruments MSP430 microcontroller 

[9] which is the “heart” of the platform as it is responsible 

for data processing and control. In the same layer, a 

32.768kHz crystal provides a local time reference and a 

clock source to the system. This layer also provides the 

following features: 

- Digital input/output 

- 12-bit analog to digital converter (built into the MSP430) 

- Universal synchronous-asynchronous receive/transmit  

- Clock System and Timers 

The microcontroller and radio layers together form the 

core of the Sensor Cube platform and they are designed to 

work closely together, a fact that justifies their physical 

proximity – direct connection. 

Below the Microcontroller Layer, two additional layers 

provide the Power Management (layer 3) and Sensing (layer 

4) features. The Power Management layer is designed in 

such a way that it can accept power from an energy 

harvesting device (including, but not limited to, solar cells 

and vibration scavengers) so as to sustain the battery life. A 

standard battery is also connected to this layer: for example, 

the Varta 2-cell NiMH batteries, with a nominal voltage of 

2.4V.  The available sensing equipment is comprised of a 

Sensirion SHT15 Temperature/Humidity sensor and a Light-

Dependent Resistor (for measuring illumination). These 

commercial-off-the-shelf sensors produce accurate 

measurements while consuming very little power when in 

use or standby. 

2.2 Nordic nRF2401 Radio Transceiver 

     Of particular relevance to this work are the 

characteristics of the radio module and, for this reason, we 

will address it in more detail in this section. The radio 

transceiver chip provides all the hardware necessary for 

transmitting and receiving at the 2.4-2.5GHz ISM band in a 

tiny package and is characterized by its low power 

consumption, built-in power-saving modes and relatively 

high bit-rates for transmission/reception (250kbps and 

1Mbps). Control and configuration of the Radio is achieved 

by loading to it a 15-byte configuration word (or parts of it, 

depending on the changes required). The most notable 

feature of the Nordic radio chip is its ability to transmit and 

receive data in two different modes: the ShockBurst Mode 

and the Direct Mode. The very useful DuoCeiver feature 

allows simultaneous reception of two different signals, 

provided that they are 8MHz apart. This means that, even 

though a single antenna is used, the Radio can receive 

simultaneously from two potential transmitters – in other 

words, it has two channels. When in ShockBurst mode, each 

of the channels can have its own address that can range from 

8 to 40 bits. In Direct Mode it is the responsibility of the 

software to carry out any address processing.
Finally, the Nordic nRF2401 supports the following modes 

of operation (power characteristics shown in parentheses): 

- Transmit Mode (13mA average at 0dBm output Power) 

- Receive Mode (23mA average for both channels on) 

- Configuration Mode (12uA average) 

- Stand-By Mode. (12uA average) 

- Power Down Mode (400nA Average) 

2.3 Sensing Components 

As noted earlier, for the purpose of humidity and 

temperature measurement the Sensor Cubes are equipped 

with the Sensirion SHT 15 [8] multi-sensor module. The 

SHT15 can be configured to measure either relative 

humidity with an accuracy of ±2% RH or temperature with 

an accuracy of ±0.5ºC, by configuring a digital measurement 

mode register. The SHT15 sensor includes a 14-bit analog to 

digital converter. It provides calibrated, digitized data to the 

microcontroller via a serial interface. In addition, the lower 

sensor layer of a Sensor Cube contains a cadmium sulfide 

Light-Dependent Resistor (LDR) to measure illumination (in 

lux, after calibration with accuracy ±3%). This component is 

connected to one of the eight ports of the 12-bit ADC built 

into the MSP430. 

This Sensor Layer based on commercial-off-the-shelf 

sensors, completes the Sensor Cube as an environmental 

sensing module. For other applications, different custom or 

off-the-shelf sensors can be used with the Sensor Cube to 

meet the requirements of the application, thanks to the 

modularity and pluggability of the cube design.

Fig. 1 The four layers of the IMEC Sensor Cube hardware 

platform. A 2€ coin provides a size reference. 

Fig. 2 The Sensor Cube alternative hardware implementation 

using solder ball interconnect technology. 
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3 SOFTWARE PLATFORM 

In this section, we briefly discuss the rationale for the 

selection of Tiny OS as the foundation of the software 

development component of the Sensor Cube platform. To 

this end, the objectives of this work have been twofold: to 

identify a system that offers a suitable foundation in terms 

of software components and tools for further development 

with the Sensor Cube hardware, while at the same time 

restricting the amount of work required for developing the 

new components. Several alternatives were considered, 

including the standard embedded systems development 

approach of low level libraries that provide a skeleton 

functionality; and porting one of a number of emerging 

sensor network operating systems including Tiny OS [5], 

Contiki OS [2] and the Sensor Operating System [4]. We 

selected TinyOS as it offers several advantages: 

- It is one of the more mature sensor network platforms 

and provides a rich collection of development tools, routing 

protocol implementations and applications 

- Tiny OS supports the MSP430 microcontroller and a 

hardware abstraction layer is readily available 

- Tiny OS provides a simulator that uses a probabilistic 

bit error model which is relatively scalable 

The first step towards supporting Tiny OS on the Sensor 

Cubes related to the development of those components that 

supported the operation of the Nordic radio. However, it 

soon became apparent that simply supporting the standard 

Tiny OS MAC protocols was inefficient for the Nordic 

device as they failed to take advantage of its particular 

capabilities. As a consequence, we proceeded to design and 

implement an alternative. 

4 TINY OS FOR SENSOR CUBES 

Tiny OS has a simple mode of operation, following an 

event driven paradigm: every processing step is triggered 

by an event of some type and tasks triggered as a result of 

such events are added to a worker queue that is processed 

by the main program loop. This approach allows for a 

similarly simple system building process since the full 

operating system and the application are built together in 

one step. The nesC [3] compiler combines all components 

of the application and operating system and builds a C file 

that is passed to the compiler. Thus, supporting a new 

platform with Tiny OS involves modifying the following 

sections of the source code tree: 

- the platform independent operating system part (system), 

- common interface definitions (interfaces), 

- a library with commonly used functions (lib), 

- platform dependent hardware definitions and access 

driver functions (platform), and 

- definitions for different sensor boards that can be used in 

combination with the motes (sensorboard). 

    After the binary is prepared and uploaded to the sensor 

node, the program loads in memory and executes --- a 

process that combines system and application specific 

procedures. Initialization of the system components is 

carried out by the so-called Bootup process, which always 

starts at Main.nc with its first call to hardwareinit(). 

Subsequently, this function calls TOSH SET PIN 

DIRECTIONS() from hardware.h, which in turn calls 

macros to set the direction registers of the microcontroller 

and initialize the hardware clock. Finally, the Std-

Control.init() and start() functions are called and dispatched 

to all connected modules. After enabling interrupts, the 

Tiny OS system kernel enters an infinite loop calling TOSH 

run task() repeatedly. This function processes all pending 

tasks in the queue until none is left and then enters sleep 

mode until an interrupt request (IRQ) occurs. For a new 

platform, two files are required to describe its architecture, 

namely .platform and hardware.h. The former is described 

in detail in the following section and the later is used to 

assign functions to the pins of the microcontroller. 

4.1 Setting up the Build Tool-Chain 

The Tiny OS build tool-chain consists of the make 

system, the nesC compiler driver and nesC-to-C 

preprocessor. The make system provides simple ways to 

compile install and otherwise manage Tiny OS programs 

for different platforms, using a set of standard options. To 

do this, it invokes ncc, the driver for the compiler, and other 

software packaging and installation tools including uisp and 

the TI loader msp430-bsl. This system is implemented as an 

overlay to the GNU software development tools and 

compilers and, in fact, ncc is simply a pre-processor for 

nesC, with the C compiler responsible for most of the actual 

work. This has significant implications for debugging as 

variable and function names appear in the debugger output 

with their C rather than nesC names.   

     Specifying the build options so that the tool-chain will 

produce correct code for the new platform is primarily the 

role of the .platform file. Several more configuration files 

for the tool-chain are required:  

- .target files (valid make target)  

- .extra files (dummy target for defining extra make 

variables)  

- .rules files (part of “msp” subdirectory) 

Thus, the new platform name (imec) was defined, all 

necessary files specifying the different aspects of the 

compilation process for this platform had to be created and 

added to the source code tree. 

4.2 Establishing Radio Communication  

     To simplify management of system development 

processes, Tiny OS defines standard within the Tiny OS 

Extension Proposals (TEP) [10]. Two TEPs deal with radio 
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code: Radio Physical Layer and Radio Link Layer, which 

provide the hardware abstraction architecture for Radio 

Components implemented by Tiny OS. The Hardware 

Abstraction Architecture (HAA) for radio components is 

split in three separate layers: the Hardware Physical Layer 

(HPL), Hardware Adaptation Layer (HAL), and Hardware 

Interface Layer (HIL). 

     As the basis for our implementation of the Sensor Cube 

HAA components, we used software developed by 

DSYS25 [7], a sensor platform based on the Atmel AVR 

ATMEGA microcontroller and the Nordic nRF2401. In 

particular, we re-engineered a large part of the radio 

transceiver code as appropriate for our platform.  

     The correct implementation of the HPL and HAL and 

the actual radio communication layers was verified by 

testing standard Tiny OS applications. 

4.3 Supporting the Sensors 

As noted earlier, the Sensor Cube prototype 

implementation provides three sensing devices built into the 

Sensing Module and a further temperature sensor built into 

the MSP microcontroller. Supporting these sensors in Tiny 

OS involved the following steps. 

Sensirion SHT15 Humidity and Temperature Sensor. The 

Sensirion SHT11 sensor has been used in the Telos 

platform and thus a suitable driver is readily available in the 

Tiny OS source code. The SHT11 employs a one-wire 

protocol which is similar to the SHT15 but the latter carries 

out its own analog to digital conversions. The SHT15 

components which perform this conversion support the 

standard ADC and ADCError interfaces of Tiny OS and 

thus the implementation of a suitable driver was relatively 

straightforward. This design proved robust in testing with 

no problems encountered. Moreover, it provides a 

consistent external view of the sensor to other Tiny OS 

components and is compliant to the specifications in TEP 

101: Analog-to-Digital Converters [10]. Finally, the 

appropriate pin names and settings had to be configured in 

hardware.h and modifications to the interrupt pin to P1.1 

were made to match the SHT15 specification. 

Light-dependent Resistor (LDR). Support for the 12-bit 

ADC incorporated in the MSP430 is fairly mature in Tiny 

OS and follows closely the hardware abstractions specified 

in TEP 101. Thus, enabling the LDR of the Sensor Cube 

involved a simple modification of the existing code base to 

read the LDR output on input channel 0 (pin P6.0, 

configured as peripheral function). 

MSP430 Internal Temperature Sensor. This internal 

sensor is connected to input channel 10 on the ADC and is 

directly supported in the MSP430 platform. 

5 MAC PROTOCOL DESIGN 

Although assembling a fully functioning system has been 

a critical milestone for the Sensor Cube platform, in 

practice it became evident from early on that it was 

necessary to design an optimized protocol stack. This task 

involved the development of an energy-efficient MAC layer 

that closely fits the capabilities of the radio component. In 

this section, we detail the design of this protocol stack. 

There are several limitations imposed by the 

characteristics of the Nordic design: due to lack of a high 

speed clock source, which would lead to substantially 

higher power consumption, it is not possible to employ the 

transceiver’s Direct Mode, which would allow for better 

radio control. Moreover, in Shockburst mode, the control 

header and the payload cannot exceed 32 bytes, which is 

the maximum frame size. Finally, the radio configuration 

word cannot be altered while the device is transmitting or 

receiving data. 

5.1 MAC Design Overview 

Two choices were available to us in transmitting 

acknowledgement packets: 

• Use the same channel for ACKs as for the data. 

However, ACKs are shorter than data packets, so either we 

simply fit an ACK within the larger data packet and 

transmit more than is necessary (wasting energy), or we use 

the data width field in the configuration word of the Nordic 

interface to alter the size of the Shockburst frame between 

ACK and data packets. Unfortunately, the time required to 

carry out this change is 1ms, which is approximately equal 

to the time required to transmit a full frame at 250kbps. 

• Recall that the radio component can be operated in two 

separate channels, and, as we elected, to use Channel 1 to 

send data (with a full frame size of 32 bytes) and Channel 2 

for sending/receiving ACK packets (with a frame size of 13 

bytes).

The maximum ShockBurst frame of 32 bytes includes 

the ShockBurst address, the CRC and the payload requested 

by the MCU. In our implementation, the payload represents 

an Active Message (AM) packet constructed by the 

associated TinyOS layer, and contains control header fields 

and actual data sent from the application. Inevitably, the 

question of fragmentation arises as a result of the limited 

Shockburst frame size and the fact that the overhead 

incurred by the different components allow only for 20 

bytes of payload available to the application (3 bytes are 

used for Shockburst address, 1 byte for CRC and 8 bytes 

for AM control header). Nevertheless, taking into account 

the actual data that is transmitted in a sensor network under 

normal operating conditions, we decided not to address 

fragmentation at this stage: applications normally would 

send only a few bytes of data due to sensor readings and 

some amount of control information as part of the routing 

protocol. In this scenario, providing for fragmentation at 

this level would mostly reduce the efficiency of the system 

as it would add additional header data which would be 

unnecessary for the vast majority of packets. Instead, those 
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applications that require fragmentation are expected to add 

it as needed. 

The use of the Shockburst mode as the principal mode of 

communications implies that two addresses are 

encapsulated in every data packet: the Shockburst broadcast 

address and a node-specific address within the AM header. 

This approach allows us to combine the performance 

advantages of Shockburst while at the same time retaining 

the capability to address data to specific nodes and thus 

maintaining unicast semantics. 

The next design decision was for the receiver to use a set 

duty cycle that switches the radio between stand-by and 

receive mode at regular intervals, in order to reduce the 

overall level of energy consumed. The amount of time the 

radio stays in either mode is configurable at application 

development time, and a more detailed discussion of the 

implications of various choices for duty cycle can be found 

in section VI.  

For the same reason, we decided against using carrier 

sense and, rather, elected to use a simple Aloha-based 

protocol instead. In the case of carrier sense, on 

transmission, the radio listens to the channel to determine if 

it is used by some other station. However, if collisions are 

rare, either as a result of low node density or low 

transmission rates, as we expect for these nodes, then the 

higher energy cost required by this approach is not justified 

by a requirement for collision avoidance. 

Fig.3. Flowchart describing the logic of the 

Transmitter’s MAC table.  

Nevertheless, it is still necessary to address the problem 

of collisions whenever they arise. A further complication of 

the selected solution is the fact that a receiver node may be 

in stand-by mode when the transmitter is sending data and 

hence unable to receive them. To address both of these 

problems, we employ link level acknowledgements and 

retransmissions. In this scheme, as soon as the transmitter 

sends data, it waits for an acknowledgement for a set 

duration of time, which is also configurable. If no 

acknowledgement arrives within this time frame, then the 

packet is retransmitted. Note that since the transmitter 

cannot distinguish a packet which was lost due to a 

collision or because the receiver was in stand-by mode, the 

transmitter resends its packets until it receives an 

acknowledgement or reaches the Maximum Retransmission 

count (which is also configurable in application code). 

Fig 4. Flowchart describing the logic of the  

Receiver’s MAC table. 

A further technique that we considered for inclusion in 

the protocol, was RTS/CTS (Request to send/Clear to send), 

which is a mechanism often used in wireless systems to 

avoid the hidden and exposed terminal problems. To avoid 

both of these problems, the RTS/CTS mechanism is used to 

establish a session before initiating the transmission thus 

removing the possibility of collision from data packets, 

which can be long, to RTS/CTS packets, which are short 

and therefore less likely to result in collision. In our case, 

data packets are themselves not long, and so the value of 

adding the RTS/CTS mechanism is at best questionable. 

The hop-by-hop data forwarding which uses a unicast 

transmission is protected by the link-level 

acknowledgements which we introduced and 
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retransmissions, and effectively addresses the hidden 

terminal problem. 

5.2 MAC with Idle-RQ Table Management 

     The MAC layer can have no more than one 

outstanding packet at any given point of time. A packet is 

said to be outstanding, when it has been transmitted and not 

yet acknowledged and the maximum retransmission count 

has not yet been reached. Allowing multiple outstanding 

packets might result in a collision (with any ALOHA based 

approach) and will also increase the complexity of 

sequence number management. Before performing the 

actual transmission of the packet, the following checks will 

be performed by the MacTable as described in the 

flowchart in Figure 3. A similar table is maintained at the 

receiver and its operation is highlighted in Figure 4. 

Fig.5. Radio State Diagram 

Fig.6. Backoff State Diagram 

Fig.7. DutyCycle state diagram.   

Figure 5-7 show the the various states and events that 

cause state transitions within the MAC layer. In summary, 

the Sensor Cube MAC provides no fragmentation, thus 

eliminating the fragment header overhead; does not employ 

no carrier sense; and implements a low data width 

Shockburst frame for acknowledgements. 

6 EVALUATION AND PERFORMANCE 

ANALYSIS

     To evaluate the performance of the Sensor Cube 

platform a number of experiments were carried out. In this 

section we explore the behavior of the proposed MAC 

protocol in the context of a controlled environment. We aim 

to draw conclusions regarding the effects of different 

choices of parametres regarding the duty cycle and 

retransmission on the performance of the MAC protocol. 

The evaluation process aimed specifically to provide an 

understanding of the trade-offs involved and draw 

conclusions on how different duty cycle lengths and ratios, 

acknowledgements and retransmissions can affect packet 

delivery ratio. The aim has been to identify the optimal set 

of parametres for some application. Rather than have this 

discussion in the abstract, we specifically considered the 

case of data harvesting using the Surge application [5], a 

simple tree-based acquisitional query engine available with 

Tiny OS.

6.1 Experimental Setup 

     The experiments were conducted in an environment 

that supports several wireless LANs, and as a consequence 

there was a significant amount of interference, as both 

Sensor Cubes and the IEEE 802.11 protocol use the 2.4GHz 

band. We did not investigate the case where physical 

obstacles were located between the communicating nodes, 

as they were found to communicate with great difficulty 

even through a single wall. For the experiments, two Sensor 

Cubes were used that were powered from constant voltage 

sources in order to eliminate any effects that inadequate 

power supply would introduce. The first sensor was 

powered by a laboratory power supply, set to output 2.7V, 

whereas the second was powered directly from the USB 

programming board that also provided 2.7V. The sensors 

were placed in positions which allowed line of sight and at 

distances of 1, 6 and 12 metres. Since the aim was to 

explore the impact of acknowledgements, retransmissions, 

physical proximity and duty cycle lengths and ratios to 

packet delivery ratio, a driver application was developed to 

enable the exploration of the parametre space.  
For testing, a two part application was used with a 

Transmitter and a Receiver role. The transmitter sent 100 

packets at a time. In the case where acknowledgements 

were used, the timeout was set to 4ms. After 8 

retransmissions had been attempted the transmitter moved 

on to the next packet. Thus, a transmitter could potentially 

send up to 800 packets if no acknowledgements were ever 

received. In either case, packets were sent at regular 

intervals which, on success, were 175ms.  

On the receiver side, the overhead of writing data to the 

USART so as to record on the laptop host was found to be 

significant and interfered with the operation of the protocol. 
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Therefore, it was decided to minimize communication to 

and from the laptop by maintaining the received packet 

count in a dedicated variable in the receiving Sensor Cube’s 

memory, the value of which was not transmitted until the 

end of the packet transmission cycle. Since the number of 

packets could vary, a watchdog timer was used to flag an 

upper threshold. The timer itself did not affect the 

performance of the protocol. The experiments conducted 

involved measurements of both the transmission and 

reception sides. 

6.2 Experiment Analysis 

     Two sets of experiments were conducted. In the first 

case, acknowledgements and retransmissions were disabled 

in order to give a baseline measurement. The transmitter 

and receiver were placed 6 metres apart and 100 Shockburst 

packets were transmitted, with different duty cycle periods 

at the receiver. For each duty cycle value, the experiment 

was repeated three times and the average packet delivery 

ratio was recorded. The results are shown in Figure 8.  

Fig. 8. Packet Delivery ratio with disabled 

acknowledgements

From the graph of Figure 10 can be seen that a 62% duty 

cycle wake time the packet delivery ratio seems to be 

relatively high (93%), but if the wake time is decreased, the 

packet delivery ratio is reduced before it rises again. The 

intermediate reduction is the result of a misalignment 

between transmission periods and reception periods, and 

the increase simply a synchronization effect. Hence, to 

achieve a packet delivery ratio of at least 90%, the receiver 

must have a duty cycle of no less than 60% wake time (and 

thus 40% sleep time).  

  In the second set of experiments, the same setup was 

used as for the first set;. however, acknowledgements and 

retransmissions were enabled. From Figure 9, it is clear that, 

in spite of very low wake time in the duty cycle (25% wake 

time) the packet delivery ratio remained high at 96%. Thus, 

this version of the MAC protocol smoothes out the 

synchronization effects seen in the previous experiment, in 

addition to providing reliable delivery. At first glance, this 

approach also appears to save energy, since the receiving 

node can remain off for a greater proportion of the runtime. 

However, reality is not quite so simple: acknowledgements 

and retransmissions also require energy for both parties as 

both nodes must be enabled, though only for the relatively 

short time window in which an ACK is generated. Likewise, 

to raise the packet delivery ratio from the one shown in 

Figure 8 to that of Figure 9, retransmissions have clearly 

happened. In fact, for a 30% duty cycle, around three 

retransmissions will be needed to raise delivery rate from 

33% to 97%. Although, such communication also has a 

considerable energy cost associated with it, this cost is 

borne by the transmitter rather than the receiver. Thus, the 

addition of ACKs will tend to move energy consumption 

away from the receiver and towards the transmitter. 

Fig 9. Packet Delivery ratio with ACKs enabled. 

The true picture of energy costs requires careful 

consideration of the number of retransmissions needed for a 

packet to be received at a given duty cycle. However, this is 

also not simple, for the same reasons of synchronization 

that lead to the non-monotonicity of the first experiment. 

Thus, a third set of experiments were conducted, again to 

observe packet delivery ratios, but this time by choosing 

different sleep/wake cycle durations at the receiver, though 

all with the same proportion of wake time (37.2%) to sleep 

time (62.5%) and without ACKs enabled. The recorded 

values are plotted in Figure 10. Even with the same duty 

cycle, synchronization effects between sending and 

receiving windows cause widely varying delivery ratios and, 

consequently, widely different energy consumption figures. 

Further work is required in this area. Nevertheless, it is 

our contention that if transmissions are irregular, then the 

inherent randomness in the synchronization would tend to 

avoid a situation of persistently low delivery ratio. If, on the 

other hand, the transmissions are regular, as in the 

experiments above, various alternative approaches to 

increasing delivery rates should be considered. An initial 
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phase in which ACK and retransmission occurred could be 

used to understand how accurate was the synchronization 

(provided that the receiver knew that a packet were a 

retransmission, something that would cost an extra bit), and 

thus drive the receiver towards synchronization with the 

transmitter. The situation is more complex in the case of 

multiple transmitters, but the process can be repeated for 

different receive windows. All of these have impacts on the 

energy consumed, leading to a rather complex picture. 

Fig.10. Packet Delivery ratio with different cycle durations 

(in ms). Duty cycle is 37.5% awake in one contiguous 

period. 

Finally, it must be noted that these experiments are 

intimately related to the application in question. Thus, in 

realistic deployment scenarios, a fine tuning step would be 

required to identify the optimal wake up/sleep cycle which 

best balances data quality requirements and energy 

consumption. 

7 CONCLUSIONS 

The Sensor Cube is a new sensor network platform based 

on IMEC’s ultra-compact, modular sensor hardware.  The 

modularity of the design allows for increased flexibility in 

tailoring node capabilities to the application at hand and 

also provides a coplanar antenna. A software development 

environment based on Tiny OS complements the hardware 

thus providing a complete platform for the development of 

sensor network systems. To this end, a simple, reliable, 

ALOHA based, power efficient MAC protocol with 

appropriate duty cycle management has been introduced to 

closely meet the requirement and limitations of the 

hardware. Empirical evidence suggests a high packet 

delivery ratio (above 95%) with relatively low radio duty 

cycles (25% active). Multi-hop routing protocols bundled 

with Tiny OS have been shown to operate effectively on 

top of the Sensor Cube radio stack, and were tested 

experimentally and in simulations. 
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