
Addressing Scheduling Issues in Context Information Management

M. Chantzara
*
, N. Vardalachos

**
 and M. Anagnostou

*

*
School of Electrical & Computer Engineering, NTUA,

*
9 Heroon Polytechniou Str, 157 73 Zografou, Athens, Greece, {mchantz, miltos}@mail.ntua.gr

**
Department of Electronic and Electrical Engineering, UCL,

**
Torrington Place, London, WC1E 7JE, UK, nvardalachos@iee.org

ABSTRACT

The provision of context-aware services, that is crucial for

mobile and ubiquitous computing, prerequisites appropriate

management methods for acquiring, processing and

distributing context information. This paper focuses on the

challenge that refers to the seamless provision of real-time

access to the dynamically changing context data. It studies

the problem of handling the order of the information update

requests issued by the context sources. The objective is to

maximize the freshness of the delivered data and satisfy the

timing constraints of the context consumers, when firm

deadlines, non-pre-emptive order and limited processing

resources are considered. In order to tackle the conflicting

requirements, the Importance/ Popularity/ Urgency - Aware

Scheduling Algorithm is developed. The proposed algorithm

is evaluated through extensive performance studies.

Keywords: Context information, context management,

scheduling algorithm, timing constraints, data freshness.

1 INTRODUCTION

The advances in wireless communications and user

mobility have given quite a boost to the research about new

classes of systems called pervasive systems [1]. The creation

and provision of the Context-Aware Services (CASs) that

get aware of the execution environment such as location,

time, user’s activities, devices’ capabilities in order to tune

their intended functionalities and adapt to both the changing

environment and the user requirements is of great

importance [1] towards the materialization of pervasive

computing. One of the key challenges of the field is “the
seamless provision of real-time access to the dynamically

changing context data”. “Seamless” points to the design of

middleware solutions for distributing of context data.

Distinguishing the functionality of CASs from the

acquisition of context provides flexibility and scalability. As

stated in the [2], the role of the context management

middleware is similar to that of the database management,

only one level higher. The context middleware is

responsible for allowing one or more users/services to create

and/or access data stored in distributed databases or

dynamically produced by complicated tools and sensors.

This challenge also talks about “real-time access”. However,

“real-time” should not be confused with “fast”, since the

objective of real-time computing is to meet the indicated

timing requirements of each task [3][4]. It is a fact that

missing deadlines might mean missing opportunities as well

as operating on stale data might mean wrong decisions for

the context-aware services. Therefore, data freshness and

requests’ timeliness should be balanced.

In order to tackle the aforementioned issues, this paper

proposes a system of brokers that is responsible for

acquiring the information from the sources, efficiently

processing requests for information and distributing the data

to the requestors. It then focuses on the problem of

scheduling the sources’ data updates and the requests for

information, considering both the timing and the resource

constraints. Requests’ timing constraints include deadlines,

and requests’ must be scheduled such that these constraints

are met. Data freshness is the data temporal consistency,

describing how old a data item can be and still be considered

valid. Solutions for addressing the pertinent scheduling

issues have been developed in the context of real-time

databases ([5][6]), that are asked to maintain time-

constrained data and time-constrained transactions. This

paper introduces the scheduling algorithm, called

Importance/ Popularity/ Urgency- Aware Scheduling

Algorithm (IPU) for determining the order in which the

incoming source update requests are handled, considering

that the requests have firm deadlines. The objective is to

minimize the missed deadlines and maximize the freshness

of the delivered data. The proposed algorithm is evaluated

through extensive performance studies.

The rest of the paper is organised as follows: Section 2

describes the context information collection model. Based

on this model, in Section 3 the problem of establishing

priorities among the update requests is formulated and the

proposed algorithm is presented. The evaluation setup, the

metrics that are used and the performed simulations are

presented in Section 4. The related work is discussed in

Section 5. Finally, Section 6 concludes the paper.

2 CONTEXT DISSEMINATION MODEL

Aiming to make the creation and provision of CASs easier

and more efficient, the abstraction between context

information sources and CASs has been widely proposed in

the literature [7]. Based on this concept, the role of Context

Broker (CB) is introduced. The CB is responsible for

handling the collection of the information from the sources,

efficiently processing requests for information and

distributing the context data to the requestors. The IST

project CONTEXT [8] followed this model and

- 68 -

ICMU2006

implemented a context management middleware that is

based on Peer-to-Peer architecture and supports the

cooperation of multiple peer CBs. The distributed CBs act

as a federation that cooperates to answer context requests. A

detailed description of the communication mechanisms

between the CBs is presented in [9]. Each CB offers the

Context Information Provider Interface (CI Provider API)

that enables context sources to initially declare and then

supply the information they produce and the Context
Information User Interface (CI User API) that enables CASs

to request the information they want to consume. The same

interfaces can also be used by the sources that act as logical

sensors, process data produced by other sources, and

provide high-level data. For the rest of the paper, the term

context consumer describes every entity asking for context

information.

Figure 1: Context Information Collection Model

The CB receives two types of requests: Source Update
Requests issued by the context sources and Consumer

Requests issued by the consumers. All the requests are

maintained to the corresponding request queue (Source

Update Requests Queue and Consumer Requests Queue)

until they are served by the Broker (Figure 1). Once a

consumer request is dispatched, the proper source to provide

the requested information is discovered based on the

approach described in [10]. The consumers only ask for

current data, not historical data at a specified time instant.

The CB supports both synchronous and asynchronous means

of communication in order to satisfy both synchronous

queries and asynchronous event notifications. Therefore, the

context consumers could either issue a context query or a

subscription for context events. In the latter case, the

consumer is subsequently notified of any event generated by

the pertinent source. When it wishes to stop receiving such

notifications, the context consumer issues a un-subscription.

Based on their periodicity, the context sources can be

characterized as: 1) Periodic Sources: When they provide

updates periodically, thus every specific time period that is

called refresh time. 2) Aperiodic Sources: When they

provide updates aperiodically (the sensed value changes or it

reaches a given threshold). Regarding the context

provisioning scheme, two types of information delivery, are

considered: 1) Passive Sources: This type provides

information in consumer-initiated pattern. 2) Active Sources:

This type provides information in a source-initiated pattern.

The context sources are also distinguished based on the

offered “value” to the context consumer. This “value” is

usually expressed by the purchase cost; Context data with

higher cost are more “valuable” to consumers and producers

as well as the CB that distributes it. Although data could

have many different values, only three sets: low, medium

and high importance, are considered.

When the CB receives a context request, it discovers the

appropriate source to answer it. If the pertinent source is a

passive one, it transfers the query to source. Once the source

receives the request, it either delivers the current sensed

value back to the consumer (if the request is context query)

or initiates the delivery of the updated values in the form of

notifications (if the request is context subscription). For the

active sources, the CB is responsible for collecting the

updated values and storing the delivered values in the

context repository. Therefore, when the CB receives a

context query for the data of an active source, it retrieves the

latest stored value that is already delivered by the pertinent

source and distributes it to the consumer. When the CB

receives a subscription for notifications produced by an

active source, it stores the subscription and distributes the

context notifications that are generated by the pertinent

source as soon as they arrive. Finally, a caching utility that

stores the most recent collected values, to be later used, is

developed. Answering requests with the cached values that

still remain valid is expected to satisfy better the timing

restrictions, since data will be provided in less time.

3 SCHEDULING PROBLEM

3.1 Problem Formulation

The collection and distribution of context information

involves many complex problems such as data integrity,

discovery, real-time update, secure storage, distribution,

caching and replication. This paper is focusing on the

problem of prioritising the issued requests in order to

maximize the freshness of the delivered data and satisfy the

timing constraints of the context consumers, while firm

deadlines, non-pre-emptive order and limited processing

resources of the CB are considered. Before formulating the

problem, the parameters that characterise each type of

requests are defined. Every request is described by:

1. Start Time (S): The time point it is issued.

2. Arrival Time (A): The time point it enters the queue.

3. Execution Time (E): The time point it is executed.

4. The Deadline is the latest time point that the request

should be served, otherwise it is considered useless. This

parameter is defined in two ways:

Relative Deadline (RD): It is the time period after the S.

Absolute Deadline (AD): It is the time point that comes

out of adding RD to S.

A Consumer Request (CR) is also characterised by:

1. Selected Context Source (SS(CR)): The context source to

retrieve the requested info.

2. Source Update Request SUR(CR): It delivers the value

that is utilized to answer the context request.

A Source Update Request (SUR) is also characterised by:

1. The Context Source CS(SUR) that produces the update

request. The quality characteristics of a CS are: Accuracy

- 69 -

ICMU2006

A(CS), Refresh Time RT(CS) and the Cost C(CS), while the

timestamp of the latest stored value is T(CS).

2. Importance I(SUR): As it was mentioned previously, three

importance levels: low, medium, high, taking values 1,2,3

respectively, are defined based on the cost of the context

information.

Regarding the data freshness and the consumer request

timing restrictions, the following definitions are introduced:

Definition 1: Consider the SUR issued from the source CS.

The delivered data is considered fresh, if it is consumed

until AD(SUR)=RR(CS(SUR)).
Definition 2: Consider the CR for data from the source CS,

namely SS(CR) = CS. SUR is the most recent source update

request. The following statements hold for the CR:

o It receives fresh data, if it is served until AD(SUR).

o It meets its deadline, if it is served until AD(CR).

o It is successful, if it is served in time with fresh data.

Thus, it is served until min{AD(CR),AD(SUR)}.

The scheduling problem that is studied consists of three

sub-problems. Given the timing and resource constraints, it

should be determined: 1) What source update request to

install next. 2) What consumer request to answer next. 3)

What is the priority of a source update request versus a

consumer request. However, since the workload imposed by

the consumer requests is minimal, comparing to the

workload imposed by the source updates requests, the

problem can be deduced to the first sub-problem which

refers to the scheduling of the source updates requests. This

happens because, in a context provision system, most of the

consumer requests ask for context notifications during a

specific time period, while context queries are less

preferable. When a context subscription is issued, the CB is

informed accordingly and delivers the proper context

notifications upon arrival. When a context query is issued,

the stored context value is retrieved and it is delivered to the

requestor. On the other hand, the delivery of source update

requests requires more system resources for both discovery

and storage processes. Therefore, it is assumed that both

context subscriptions and queries are dispatched

immediately when entering the Consumer Request Queue,

before dispatching any source update request. Finally, the

objective and the restrictions of the resource-constrained and

time-constrained scheduling problem are:

Objective: The maximization of the number of the

consumer requests that are successfully answered.

Restriction 1: The number of requests that the broker can

dispatch is limited by its processing resources (CPU).

Restriction 2: Only the source update requests that deliver

fresh data should be dispatched.

Restriction 3: Context queries should be answered

immediately.

Restriction 4: Context notifications should be delivered

within the deadline the context consumer that subscribed.

3.2 Proposed Scheduling algorithm

The scheduling algorithms can be characterised as being

either static or dynamic. A static approach pre-determines

the schedules for the system, while a dynamic method

determines schedules at run-time. Some of the state-of-the-

art algorithms are: 1) First In First Out (FIFO) that assigns

priorities based on the time point they arrive to the system.

2) Rate Monotonic (RM) that assigns priorities inversely

proportional to the period. 3) Earliest Deadline First (EDF)
that assigns priorities based on the absolute deadlines.

This paper introduces the dynamic scheduling algorithm

called Importance/Popularity/Urgency-Aware Scheduling

Algorithm (IPU) for scheduling the source update requests.

This algorithm considers both the timeliness requirements of

a request and how valuable is the request to the system [11].

Since the concern is not only how many transactions are

missed, but also which transactions are missed, the proposed

algorithm considers the transactions’ worth expressed by the

importance of the sources. Moreover, in order to minimize

the requests that miss their timing constraints the

“popularity” of a source update request, describing the

demand of it, is considered. As a result of this, requests with

higher demand are given higher priority than the others. The

popularity Pop(SUR, t) of the source update request SUR

expressed by the context source CS is computed by the

access ratio of CS at given time t.

tCRACR

SURCSCRSStCRACR
t)Pop(SUR,

ii

iii

)(,#

)()(,)(,#

 Furthermore, since the objective of the system is to

deliver fresh context values, data timeliness is considered

for both context notifications and queries. Therefore, the

“urgency” is introduced in order to describe the importance

of dispatching the source update requests, based on the

timeliness requirements. It could be defined that urgency is

inversely proportional to the request absolute deadline, just

like EDF, but in that case, even though the context

notifications would be delivered within their deadline, the

stored values would soon expire and the context queries

would be answered with stale data. Therefore, it is more

valuable to dispatch the requests in such an order that the

stored values remain fresh for a longer period. Additionally,

the IPU is trying to do the ordering fairly enough among the

context sources. Thus, the refresh cycles that no updated

value has been stored are taken into account. The Urgency

Urg(SUR, t) of the source update request SUR:

))()((*),(),(tSURADSURStSURpImUrgtSURUrg

The UrgImp(SUR,t) describes the refresh cycles of the

corresponding context source that no source update request

is dispatched. It ensures that any deadline misses are

scattered across the different context sources. For the

periodic source update requests, this parameter is defined:

)(

))(()(
),(

SURAD

SURCSTSURS
tSURpImUrg ,

while for the aperiodic ones it is a system parameter. The

value assignment to this parameter represents the preference

factor between periodic and aperiodic sources.

To sum up, the IPU assigns priorities of the source update

requests dynamically based on the Urgency, the Importance

and the Popularity. The necessary data to compute the

priority of each source update request is available by both

- 70 -

ICMU2006

the Broker and the request itself. The IPU enables more

source update requests to be served in time, so that more

consumer requests are answered successfully. Finally, the

Priority PR(SUR,t) of the SUR at t is computed based on the

following equation that involves no extra processing than

simple math operations:

)(*),(*),(),Pr(SURItSURUrgtSURPoptSUR

4 EVALUATION

This section presents the experimental setup, the

performance metrics and the performed simulations. The

proposed algorithm is evaluated against the algorithms:

FIFO, EDF and RM.

4.1 Simulation Model

The system model is described in terms of the context

sources, the source update and consumer requests, and the

system parameters:

Sources and Source Update Requests Model: Consider N

number of context sources (Nsources). If the probability for a

source to be active is pactive, the probability for a source to be

passive (ppassive) would then be 1-pactive. Similarly, the

probability for a source to provide periodic and aperiodic

updated context values would respectively be pperiodic and

paperiodic= 1- pperiodic. Also, the respective probabilities for a

context source to provide low, medium and high value data

are plow, pmedium and phigh=1-plow-pmedium. The refresh cycle of

the context sources is a uniformly distributed integer in the

range (0, 2* Refresh_Time), with mean value Refresh_Time
(RT). All the sources are initialized before the consumer

makes any requests. The periodic sources provide a new

context notification every refresh cycle, while the aperiodic

sources generate aperiodic context notifications after a

specific number of refresh cycles. This number is an

exponentially distributed integer with a mean

Aperiodic_Rate (AR). Since the context sources are located

at different network nodes, the source update requests do not

arrive at the Source Update Request Queue immediately

when produced, but with an arrival latency described by a

percentage of the Refresh Rate (Delay_Ratio). Thus, for the

source update request SUR the arrival time at the queue is:

A(SUR)=S(SUR)+Delay_Ratio*RT(SUR). Finally, the

estimated mean execution rate for the source updates that

describes the number of update requests that are served

within one second is known as the Execution_Rate (ER).

Consumer Requests Model: Consider N number of

consumer subscriptions (Nconsumers) for context notifications.

Apart from these subscription requests, there are queries for

the current context values. These arrive at the Consumer

Request Queue following a Poisson distribution with a mean

inter-arrival time of Queries_Rate (QR) seconds. The

demand for the context data is produced randomly and

uniformly from the context sources. The deadline of each

context consumer is computed based on the Deadline_Ratio

(DR), describing the percentage of the refresh rate for a

given source. Thus, for a context consumer CR the Absolute

Deadline is equal to AD(CR) = A(CR) + Deadline_Ratio *
RR(CS(CR)).

System Model: The time window (Abortion_Window)

describes the time a given source update request is allowed

to wait in the queue before being dispatched. The Queue
Size describes the capacity of the Source Update Request

Queue, i.e. the number of source update requests that are

allowed to wait in the queue. Finally, the Time describes the

time period the system is being monitored.

In order to quantify the workload of the system, the

parameter Load is used. This parameter describes the ratio

of the work generated to the total execution capacity.

Obviously, the focus is on the source update requests, since

the consumer requests produce no load. The arrival rate of

the updates generated by a periodic source is 1/RT, while the

arrival rate of the updates generated by the aperiodic ones is

1/RT*AR. Therefore, the Load is defined as follows:

100*

)
*

1
*

1
(

(%)
ER

Nsourcesp
ARRT

p
RTLoad

periodicperiodic

4.2 Performance Metrics

In order to evaluate the algorithm’s performance, the

following performance metrics are introduced:

The Delivered Notifications Ratio is the average fraction

of the updated context values delivered to the context

subscribers.

The Fresh Queries Ratio is the fraction of the queries that

were answered with fresh data retrieved from the cache or

the context repository.

The Profit that is gained by the CB for delivering fresh

updates in time and answering queries with fresh data.

4.3 Simulation Results

In order to evaluate the effectiveness of the proposed

algorithm, several test scenarios have been developed. In

each of them, the effect of one system parameter to the

performance metrics is examined. Due to space limitations,

only some of the performed tests are presented in this paper.

Each experiment has been evaluated with 10 samples, and

apart from the average value, the 90 percent confidence is

also reported. The default system parameters are depicted in

the Table 1. Based on these parameters, the Load is 100%.

Table 1: Default Simulation Parameters

Parameter Value Parameter Value

Nsources 200 Execution_Rate 12 updates/sec

pactive 50% Refresh_Time 10 sec

ppassive 50% Aperiodic_Rate 5 refresh cycles

paperiodic 50% Nconsumers 400

pperiodic 50% Queries_Rate 5 sec

plow 33% Deadline_Ratio
1 (for notifications)

0 (for queries)

pmedium 33% Abortion_Window Refresh_Rate

phigh 33% Time 1000sec

Delay_Ratio 0.1 Queue_Size

- 71 -

ICMU2006

Test 1 - “Effect of the Refresh Rate”: In this test case, the

effect of the refresh rate is evaluated. Thus, for sources

having mean Refresh Time RT={5, 10, 15, 20, 25, 30}, the

three performance metrics (Delivered Notifications Ratio,

Fresh Queries Ratio, Profit) are reported in Figure 2, Figure

3 and Figure 4. For the considered values of mean Refresh

Time, the respective % Load of the system is {200, 100, 50,

25, 12.5, 6.25}.

0

20

40

60

80

100

5 10 15 20 25 30
Refresh Time

%
 D

e
li

v
e

re
d

 N
o

ti
fi

c
a

ti
o

n
s

FIFO

EDF

RM

IPU

IPU

FIFO

EDF

RM

Figure 2: Delivered Notifications Ratio as a function of the

mean Refresh Time

0

20

40

60

80

100

5 10 15 20 25 30

Refresh Time

%
 F

re
s

h
 Q

u
e

ri
e

s FIFO

EDF

RM

IPU

IPU

FIFO

EDF

RM

Figure 3: Fresh Queries Ratio as a function of the mean

Refresh Time

30000

40000

50000

60000

70000

80000

5 10 15 20 25 30
Refresh Time

P
ro

fi
t

FIFO

EDF

RM

IPU

IPU

FIFO
EDF

RM

Figure 4: Profit as a function of the mean Refresh Time

As it can be seen from the previous figures (Figures 2-4),

when the Refresh Time is low, the proposed algorithm

performs better than the state-of-the art ones, while when it

gets higher the performance metrics of the algorithms tend

to converge. For mean Refresh Time higher than 20 sec

(when the load is smaller than 25%) the four algorithms

have similar performance. It should be noted that the EDF

achieves the smaller Fresh Queries Ratio due to the fact that

the source update requests are dispatched close to the expiry

time of the delivered data. As it can be deducted from the

Figure 4, the IPU achieves high profit even in overload

conditions; for 200% Load, the IPU achieves about 50%

higher profit than the other algorithms.

Test 2 - “Effect of Execution Rate”: In this test case, the

effect of the Execution Rate is evaluated. Thus, when the

Execution Rate becomes {3, 6, .., 27, 30} updates/sec, the

algorithms’ performance is shown in Figure 5, Figure 6 and

Figure 7. For the considered Execution Rate, the % Load is

{400, 200, 130, 100, 80, 67, 57, 50, 44, 40} respectively.

0

20

40

60

80

100

3 6 9 12 15 18 21 24 27 30

Execution Rate
%

D
e
li

v
e
re

d
 N

o
ti

fi
c
a
ti

o
n

s

FIFO

EDF

RM

IPU

IPU

FIFO

EDF

RM

Figure 5: Delivered Notifications Ratio as a function of the

Execution Rate

0

20

40

60

80

100

3 6 9 12 15 18 21 24 27 30

Execution Rate

%
 F

re
s

h
 Q

u
e

ri
e

s

FIFO

EDF

RM

IPU

IPU

FIFO

EDF

RM

Figure 6: Fresh Queries Ratio as a function of the Execution

Rate

10000

20000

30000

40000

50000

60000

70000

80000

90000

3 6 9 12 15 18 21 24 27 30

Execution Rate

P
ro

fi
t

FIFO

EDF

RM

IPUIPU

FIFO

EDF

RM

Figure 7: Profit as a function of the Execution Rate

As it can be seen from the previous figures (Figures 5-7),

when Execution Rate is low, the IPU outperforms the state-

of-the art ones, but when it increases, the performance

metrics of the algorithms tend to converge. The remarks

made for the Test 1 are also confirmed in this experiment.

- 72 -

ICMU2006

Test 3 - “Effect of the pperiodic/paperiodic sources”: In this test

case, the effect of the number of the sources that provide

aperiodic/ periodic updates is evaluated. For the {(20%,

80%), (50%, 50%), (80%, 20%)} of pperiodic, paperiodic

respectively, the Delivered Notifications Ratio and the Fresh

Queries Ratio for both the aperiodic and periodic are

compute, when using the algorithms FIFO and IPU.

70

80

90

100

20%-80% 50%-50% 80%-20%
Pperiodic-Paperiodic

%
 D

e
li

v
e
re

d
 N

o
ti

fi
c
a
ti

o
n

s

FIFO-Periodic

FIFO-Aperiodic

IPU-Periodic

IPU-Aperiodic

IPU-aper

IPU-per FIFO-per

FIFO-aper

Figure 8: Delivered Notifications Ratio as a function of the

pperiodic - paperiodic

0

20

40

60

80

100

20%-80% 50%-50% 80%-20%

Pperiodic-Paperiodic

%
 F

re
s

h
 Q

u
e

ri
e

s

FIFO-Periodic

FIFO-Aperiodic

IPU-Periodic

IPU-Aperiodic

IPU-aper

IPU-per

FIFO-per

FIFO-aper

Figure 9: Fresh Queries Ratio as a function of the pperiodic -

paperiodic

As it can be seen from the Figure 8 and the Figure 9, as the

number of sources providing updates periodically gets

higher, the reported ratios get lower. This happens because

the Load of the system gets higher and more source update

requests are aborted. Nevertheless, the ratios referring to the

aperiodic updates tend to decrease with slower rate

(Delivered Notifications Ratio) or even remain stable (Fresh

Queries Ratio) when utilizing the IPU for scheduling the

source update requests. Furthermore, in every case the ratios

of aperiodic are higher than the ones of the periodic. This

happens even in the case that the percentage of the aperiodic

sources is 80%, and is due to the facts that a request for

aperiodic data is never answered with stale information and

is considered successful even when there isn’t any fresh

notification to be delivered.

Test 4 -“Effect of the plow/pmedium/phigh sources”: In this test

case, the effect of the number of the sources that provide

low/medium/high updates is evaluated. For the {(40%, 40%,

20%), (33%, 33%, 33%), (20%, 20%, 60%)} of plow, pmedium,

phigh respectively, the Delivered Notifications Ratio and the

Fresh Queries Ratio for each type are computed. The results

are depicted in the Figure 10 and the Figure 11.

80

90

100

40%-40%-20% 33%-33%-33% 20%-20%-60%

Plow-Pmedium-Phigh

%
D

e
li

v
e

re
d

 N
o

ti
fi

c
a

ti
o

n
s

IPU-high

IPU-medium

IPU-low

FIFO-low

FIFO-high

FIFO-medium

Figure 10: Delivered Notifications Ratio as a function of the

plow - pmedium - phigh

60

70

80

90

40%-40%-20% 33%-33%-33% 20%-20%-60%

Plow-Pmedium-Phigh

%
F

re
s
h

 Q
u

e
ri

e
s

IPU-high

IPU-medium

IPU-low

FIFO-high

FIFO-medium

FIFO-low

Figure 11: Fresh Queries Ratio as a function of the plow -

pmedium - phigh

As it is displayed in the previous figures (Figures 10-11), the

IPU achieves higher ratios for the high valued requests and

the medium ones, while the FIFO behaves almost the same

for the three types. The difference of the IPU ratios is about

10% between the high-valued and the low-valued.

Finally, regarding the storage requirements of the

algorithms, it should be stated that the average waiting time

of the source update requests in the queue is minimized

when the IPU is used while it is maximized when FIFO and

EDF are used. Due to space limitations the corresponding

diagrams are not displayed. On the other hand the

computational complexity of IPU and EDF is higher than

the complexity of RM and FIFO, since the first ones assign

priorities dynamically.

5 RELATED WORK

A very good survey of the literature in the field of real-

time data management is presented in [12]. The concerns

that have been subject of research in this field are discussed

and include: data, transaction and system characteristics,

scheduling and transaction processing, distribution and

quality of service and quality of data. The [13] concentrates

on the theoretical research work in the field of real time

scheduling in the past 25 years. It distinguishes the

scheduling algorithm into three basic categories: Fixed-

priority, Dynamic-priority and Feedback scheduling.

- 73 -

ICMU2006

The authors of [14] were the first that discussed about the

timeliness and freshness requirements in real-time databases.

A soft real-time main memory database, called STRIP,

having special facilities for importing and exporting data as

well as handling derived data, is the product of their work.

In order to balance the conflicting requirements, they

presented four algorithms for scheduling sensor data updates

and user transactions. The basic concern of these algorithms

is the priority assignment between the user transactions and

the updates transactions, while the baseline scheduling that

is used is FIFO.

Data temporal consistency in addition to logical

consistence is discussed in [16]. This paper studies two-

phase locking and optimistic concurrency control algorithms

and examines the performance of RM and EDF scheduling

algorithms. The evaluation results showed that RM and EDF

are close when load is low, but EDF outperforms at higher

loads. The difficultly to maintain data and transaction time

constraints motivated the authors of [17] to introduced the

notions of “data-deadline” and “forced wait”. Moreover, the

concept of “data-similarity” is explored. These notions are

used to enhance the baseline algorithms EDF and Least

Slack First, and experimental evaluation showed that they

improve their performance.

Applying the high level notions of the feedback control in

managing database’s performance is claimed to improve the

database throughput and response time due to its robustness

against unpredictable situations. According to the QMF

architecture that uses it [18], the deadline miss ratio and new

data freshness metrics are defined by the database

administrator as the desired quality of real-time services for

a specific application. In order to support the desired QoS

and prevent overload, the QMF applies feedback control,

admission control and flexible freshness management

schemes. The [19] presents how this approach is applied to

real-time e-commerce data services. User requests are

classified into several service classes according to their

importance, and they receive differentiated real-time

performance guarantees in terms of deadline miss ratio. In

the [20] another approach that uses both feedback control

and imprecision control techniques is presented. According

to it the update frequency of the data is calculated based on

the imprecision of data and requests.

The [21] refers to real-time information collection, while

the [22] addresses the scheduling issues that arise in this

field. It talks about an information mediator that coordinates

and facilitates communication between information sources.

The objective is to maximize the efficiency of the system,

which is defined by the probability of successful consumer

requests, how good is the data and the communication

overhead involved in the process of serving all requests. In

order to tackle the arising tradeoffs, it uses the TABS

scheduling algorithm that is based on the EDF and balances

timeliness/accuracy and the MC directory service

maintenance algorithm that tries to minimize the cost.

Context information dissemination requires management

support for both periodic and aperiodic data updates, while

the literature of real-time databases only talks about periodic

data updates. In real-time databases the data updates are

issued by either active data sources, while both [22] and this

paper considers the two types of sources. However, the [22]

assumes that only periodic updates have deadlines.

Furthermore, the proposed system considers two types of

data consumers’ requests: queries for the current data and

subscriptions for context notifications, while the other

approaches consider only data queries. System requirements

and objectives are different for each data management

system. The analysed context dissemination system cares

about both the minimization of the missed deadlines of the

delivered updates and the maximization of the freshness of

the stored data. This is the reason why the EDF fails,

contrary to most of the other approaches that aim to

minimize the deadlines of the user transactions. Another

aspect of systems’ differentiation is the priority assignment

between data updates requests and data consumer requests.

As it is discussed in [14], it is up to the system designer to

select the scheme that best fits. For example, the [17]

assumes that data updates never miss their deadlines; the

[22] handles both types based on their deadline; this paper

assumes that the load imposed by data consumers’ requests

is minimal and assigns higher priority to them.

6 CONCLUSIONS

This paper has dealt with the scheduling issues arising in

field of context information management. The problem of

determining the handling order of the information update

requests issued by the context sources is formulated given

the resource and the timing constraints. Both active

(providing values spontaneously) and passive (returning

values upon request) types of context sources are considered,

in combination with periodic and aperiodic context

information generation. Context consumer requests are

distinguished in queries requesting a specific context value

and subscriptions for context value notifications. The

problem’s objective is to prioritise the requests in order to

maximize data freshness and satisfy the timing constraints

considering firm deadlines and non-pre-emptive order. In

order to achieve this, the dynamic scheduling algorithm

called IPU has been proposed. The IPU takes into account

the urgency (describing the timing requirement for serving

the request), the importance (describing the profit of serving

the request) and the popularity (describing the demand of

this request) so that more requests are answered successfully,

while it also exhibits fairness through trying to scatter any

deadline misses across the different context sources. The

evaluation of the proposed algorithm against static and

dynamic state-of-the-art algorithms, such as First In First

Out, Earliest Deadline First, Rate Monotonic, showed that

IPU outperforms the traditional approaches. The most

important performance metrics used for the assessment are

the fraction of context notifications answered successfully

and the fraction of context queries answered with fresh

context values. The results of this work are not only

applicable to context-aware systems, but also to applications

that require real-time data collection such as network

management, stock trading, air traffic control and medical

applications.

- 74 -

ICMU2006

REFERENCES

[1] M. Satyanarayanan, Pervasive Computing: Vision and

Challenges, IEEE Personal Communications Magazine,

Vol. 8, No. 4, pp. 10–17(Aug. 2001).

[2] S. Xynogalas, I. Roussaki, M. Chantzara, and M.

Anagnostou, Context Management in Virtual Home

Environment Systems, Journal of Circuits, Systems, and

Computers, Vol. 13, No. 2 (Apr. 2004).

[3] S. Xynogalas, M. Chantzara, I. Sygkouna, S. Vrontis, I.

Roussaki and M. Anagnostou, Context Management for

the Provision of Adaptive Services to Roaming Users,

IEEE Wireless Communications, Vol. 11, N. 2, pp. 40-

47 (Apr. 2004).

[4] J. Stankovic, Misconceptions About Real Time

Computing, IEEE Computer, Vol. 21, No. 10 (Oct.

1988).

[5] J. Stankovic, S. Son and J. Hansson, Misconceptions

About Real-Time Databases, Computer, Vol. 32, No. 6,

pp. 29-36 (June 1999).

[6] A. Bestavros, S. Son and K. Lin, Real-Time Database

Systems: Issues and Applications, Kluwer Academic

Publishers, Norwell, MA, (1997).

[7] G. Ozsoyoglu and R.Snodgrass, Temporal and Real-

Time Databases: A Survey, IEEE Transactions on

Knowledge and Data Engineering, Vol. 7, No. 4, pp.

513-532 (Aug. 1995).

[8] A. Dey, Understanding and using context, Personal and

Ubiquitous Computing Journal, Vol. 5, No. 1, pp. 4-7

(Febr. 2001).

[9] CONTEXT: Active Creation, Delivery and

Management of efficient Context Aware Services, IST-

2001-38142-CONTEXT, http://context.upc.es.

[10] I. Sygkouna, M. Chantzara, S. Vrontis, S.,

Xynogalas, M. Anagnostou and E. Sykas, Seamless

networking and QoS provisioning for context-cware

services in heterogeneous environments, LNCS Proc. of

the 2nd International Workshop on Mobility Aware

Technologies and Applications (MATA05) (Oct. 2005).

[11] M. Chantzara, M. Anagnostou and E. Sykas,

Designing a Quality-Aware Discovery Mechanism for

Acquiring Context Information, Proc. of the IEEE 20th

International Conference on Advanced Information

Networking and Applications (AINA06), Vol. 1, pp.

211-216 (Apr. 2006).

[12] J. Haritsa, M. Carey and M. Livny, Value-Based

Scheduling in Real-Time Database Systems, VLDB

Journal, Vol. 2, pp. 117-152 (1993).

[13] K. Ramamritham, S. Son and L. Dipippo, Real-

Time Databases and Data Services, Real-Time Systems

Journal, Vol. 28, No. 2-3, pp. 179-215 (Nov./ Dec.

2004).

[14] L. Sha, T. Abdelzaher, K-E. Arzen, A. Cervin, T.

Baker, A. Burns, G. Buttazzo, M. Caccamo, J.

Lehoczky and A. K. Mok, Real Time Scheduling

Theory: A Historical Perspective, Real-Time Systems

Journal, Vol. 28, No, 2-3, pp. 101-155 (Nov./Dec.

2004).

[15] B. Adelberg, H. Garcia-Molina and B. Kao,

Applying update streams in a soft real-time database

system, ACM SIGMOD Record, Vol. 24, No. 2, pp.

245-256 (May 1995).

[16] X. Song and J.W.S. Liu, Maintaining Temporal

Consistency:Pessimistic versus Optimistic Concurrency

Control, IEEE Transactions on Knowledge and Data

Engineering, Vol. 7, No. 5, pp. 786-796 (Oct. 1995).

[17] M. Xiong, K. Ramamritham, J. Stankovic, D.

Towsley and R. Sivasankaran, Scheduling Transactions

with Temporal Constraints: Exploiting Data Semantics,

IEEE Transactions on Knowledge and Data

Engineering, Vol. 14, No. 5, pp.1155-1166(Sept. 2002).

[18] K. Kang, S. Son and J. Stankovic, Managing

Deadline Miss Ratio and Sensor Data Freshness in

Real-Time Databases, IEEE Transactions on

Knowledge and Data Engineering, Vol. 16, No. 10 (Oct.

2004).

[19] K. Kang, S. Son and J. Stankovic, Differentiated

Real-Time Data Services for E-Commerce Applications,

E- Commerce Research, Special Issue on Business

Process Integration and E-Commerce Infrastructure,

Kluwer Academic Publishers, Vol. 3, No. 1-2, pp 113-

142 (Jan./Apr. 2003).

[20] M. Amirijoo, J. Hansson, S. Son, Specification and

Management of QoS in Real-Time Databases

Supporting Imprecise Computations, IEEE Transactions

on Computers, Vol. 55, No. 3, pp. 304-319 (March

2006).

[21] Qi Han and N. Venkatasubramanian, Information

Collection Services for QoS-aware Mobile Applications,

IEEE Transactions on Mobile Computing, Vol. 5, No. 5,

pp. 518- 535 (May 2006).

[22] Qi Han and N. Venkatasubramanian, Addressing

timeliness/accuracy/cost tradeoffs in information

collection for dynamic environments, Proc. of the IEEE

Real-Time Systems Symposium 2003, pp.108-117 (Dec.

2003).

- 75 -

ICMU2006

