
A Mobile Agent based Computing Model for Enhancing Privacy in Multi-party
Collaborative Problem solving

Md. Nurul Huda†, Eiji Kamioka‡, and Shigeki Yamada‡

†The Graduate University for Advanced Studies
‡National Institute of Informatics,

2-1-2, Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
†huda@grad.nii.ac.jp, ‡{kamioka, shigeki}@nii.ac.jp

ABSTRACT

Privacy is an important issue in multi-party collaborative
problems that are conventionally dealt with distributed algo-
rithms. To get the solution, the participants need to share their
private information, resulting in privacy loss. Several multi-
agent algorithms try to reduce privacy loss by reducing the
amount of shared private information among the agents. To
address the privacy issue in multi-party collaborative comput-
ing, we propose a mobile agent based computing model and
the architecture and functional components of a trusted agent,
which is used in the proposed model. The participating mo-
bile agents are trapped into the agent server, which is con-
trolled by a service provider. The agents can interact locally
from within the agent server platform and can utilize any al-
gorithm to solve their problem, but are restricted to disclose
any data to the outside world. A trusted service agent along
with the participating agents carries out security analysis on
the computational result to detect hidden personal data in it,
if any, and sends the signed computational result to the users.
Analytical result shows the effectiveness of the proposed mo-
bile agent based computing model in terms of privacy protec-
tion and also shows the computational cost as compared with
conventional distributed model.

Keywords: Mobile agent, multi-party collaborative com-
puting, privacy, steganography, ubiquitous computing.

1 INTRODUCTION

Ubiquitous computing hides the presence of computing sys-
tems by reducing the necessity of interactiveness. Software
agent technology plays a very important role in making the
system autonomous. Autonomy is more important especially
in multi-party collaborative problems, such as the distributed
constraint satisfaction (DisCSP) problem [15][16] and distrib-
uted constraint optimization (DCOP) problem [10][11], that
otherwise is a tedious and time-consuming job for human.
The participants solve a common problem, which involves
private data from the participants. They need to share their
private valuation of certain variables to resolve the conflicts
or contradictions among them in DisCSPs and also to opti-
mize the solution in DCOPs. Existing algorithms themselves
cannot offer very good privacy, which might be important in
many contexts such as private event scheduling problem (e.g.,
meeting scheduling [7][9][16]).

Reducing privacy loss is one of the key motivating factors
in many distributed algorithms. Traditionally DisCSPs and
DCOPs are dealt with software agents, which act and take
decisions on behalf of their users. One reason for solving a
DisCSP in a distributed fashion is that the agents might not
want to communicate all their private information to a central
agent [15]. In the centralized approach, the privacy loss of
the participants to the central agent is very high [7]. Differ-
ent distributed algorithms have different level of privacy loss.
Also, depending upon the metrics used for privacy loss mea-
surement, the relative privacy loss in an algorithm may vary
with respect to other algorithms [7][9].

One approach to provide privacy in DisCSPs has been to
use cryptographic techniques that incurs large overhead and
require to use multiple external servers which may not al-
ways be justifiable for its benefit [16]. Other cryptographic
approaches have also been proposed that are very complex
and limited to two-party and few specific function evaluation
[4][14].

This paper proposes a new idea for enhancing privacy in
multi-party collaborative computing. In the proposed com-
puting model, the participating mobile agents take users’ pri-
vate data and then, along with the private data, migrate into a
trusted agent server (provided by a third-party service provider)
into which the mobile agents are trapped. To perform the de-
sired computation, the agents interact with one another locally
and negotiate by sharing their private data like the conven-
tional distributed model. We describe the architecture of the
agent server used in our model, its functional units, service
protocol, and implementation issues. We also investigate the
data disclosure channels and their protection mechanism and
describe how we can achieve better privacy with the proposed
model. The privacy manager of the proposed architecture re-
stricts the participating agents from disclosing the acquired
private data of other agents to the outside world. It also re-
stricts the participating agents from leaving the platform with
the shared private data. A trusted service agent sends the
signed computational result to the users after the required ver-
ification that the result does not contain any hidden data in it.
The verification is done by the service agent with the coopera-
tion of the participating agents. Finally, in order to destroy the
shared data, the participating agents along with their acquired
data are disposed (or killed) at the agent server. We also evalu-
ate the proposed mobile agent based model by comparing the
privacy loss and computational cost for the same algorithm in

- 107 -

ICMU2006

it with those in the traditional distributed model.

2 MULTI-PARTY COLLABORATIVE
COMPUTING

In this section we describe some general characteristics of
multi-party collaborative computing such as DisCSP and DCOP.
A DisCSP consists of a number of variables x1, x2, ..., xn,
whose values are taken from finite, discrete domains D1, D2,
..., Dn, and a set of constraints on their values. There are
inter-agent constraints and inra-agent constraints. Solving a
DisCSP is equivalent to finding an assignment of values to
all variables such that all constraints are satisfied [15]. The
participants exchange information related to their value as-
signment to the variables to check if the constraints are sat-
isfied. Additionally in DCOPs, a global objective function is
optimized. The exchange of information related to the value
assignment to the variables is analogous to negotiation with
each other and (re)assigning values to all variables is like
reaching an agreement upon the value assignment to the vari-
ables that satisfies the constraints. For example, in the meet-
ing scheduling problem, the collaborative agents find an agreed
upon meeting date/time slot that satisfy all the constraints
(e.g. do not conflict with other personal schedules) and max-
imizes or minimizes the global objective function (e.g. most
preference, least cost) of the group.

3 PRIVACY PROTECTION MODEL

The privacy loss model of collaborative computing consists
of three parties: data subject or owner, data user and third
party. When part of the personal data is shared with a data
user, the shared private data may get disclosed to third parties
from the data user’s system. Besides intruders, the data user
may disclose the shared data to unauthorized parties (Figure
1).

Personal
data (D1)
Personal
data (D1)

Data Owner
(Subject)

Data User

Pd

Third party

Pm

Personal
data (D2)
Personal
data (D2)

Personal
data (D3)
Personal
data (D3)

Probability of disclosure Probability of mapping

Subject

Figure 1: Privacy loss model.

It can be said that privacy loss takes place if (a) the data
user can disclose the shared private data to any unauthorized
entities and (b) the data receiver can map or associate the
shared private data with the specific individual. The conven-
tional distributed model is multi-agent based where the partic-
ipating agents are stationary and they communicate through
remote messages. In our proposed mobile agent based pri-
vacy enhancing model (Figure 2), the participating (mobile)
agents along with their private data migrate into a neutral
agent server platform into which they are trapped, interact
locally, and share their private data to perform the desired
computation. They are restricted from leaking out anything

and only the computational result is sent to the users by a
trusted service agent. The service agent performs security
check on the computational result to protect the participating
agents from hiding information in it.

(Computing
System)

Result

User 1 User 2

Inputs Inputs
Agent Server

Migration Migration

Agent Agent

Security check Multi-signature

Figure 2: Proposed multi-party collaborative computing
model.

Since, each participating agent uses the private data of other
participating agents, for fair and uniform control over them,
the agent server should be controlled by a third party (e.g.
service provider). The restrictions imposed on the data users
(mobile agents) should not have any impact on how the data
are utilized in solving the problem. The desired control over
the data users can be achieved by controlling the system re-
sources that they use. In the proposed mobile agent based
model, we refer the agent server platform as the iCOP (iso-
lated Closed-door One-way Platform) within which the agents
can interact and negotiate with one another like in the conven-
tional distributed model and have the autonomy to implement
their own strategies in solving the problem. The agent server
does not restrict the agents to any specific algorithm i.e., they
can use any convenient algorithm based on their goals.

3.1 iCOP Architecture

iCOP is an agent execution environment for the partici-
pating agents of multi-party computation, isolated from user
hosts and user direct control over their agents. It is a closed-
door platform from where the participating agents cannot com-
municate with the outside world. It is a one-way platform,
that is the participating agents are allowed to only enter into
the iCOP host platform with proper authorization but are not
allowed to leave the platform. On completion of their task, all
the participating agents are disposed at the iCOP host. iCOP
architecture consists of two basic units: a) Management unit
and b) Computational unit. Figure 3 shows a simple concep-
tual diagram of iCOP architecture.

The computational unit, consisting of the participating agents,
performs basic computations. The input data, which it needs
to solve the problem, come along with the agents through this
channel. The management unit oversees the operations of
the computational unit, monitors and controls the resources
which the computational unit may use to perform it’s com-
putation. The management unit exercises access control over
the computational input channel and output channel.

In order to make the decisions necessary to properly over-
see the operation of the computational unit, the management
unit uses policies that govern and constrain the behavior of the
computational unit. Mandatory policies are security related

- 108 -

ICMU2006

Management Unit Computational Unit

Mandatory

Policy

Mandatory

Policy Optional

Policy

Optional

Policy
Management

Channel

(Input)

Computational

Channel

(Input)

Computational

Channel

(Output)

Monitor,

Control

Access

Control

Access

Control

Privacy

Manager

Privacy

Manager
Service

Agent

Service

Agent

Management

Channel

(Output)

Mobile

Agent

Mobile

Agent

JVM

Mobile

Agent

Mobile

Agent

Figure 3: Logical structure of iCOP.

policies and optional policies helps in service maintenance,
say by creating log files.

The privacy manager of the management unit is the con-
troller, which enforces the specified privacy policies. It mon-
itors the resource access request activities and based on the
specified policies, it grants or denies the access to the re-
sources for the requestor. The service agent of the manage-
ment unit coordinates among participating agents in solving
the problem and sends only the computational result to the
users. The type of coordination and its protocol may vary de-
pending upon the type of application. But, a service agent has
four responsibilities: (1) coordination among the participat-
ing agents, (2) participate in the verification that (probably)
no private data has been encoded into the computational re-
sult, (3) send the computational result, and (4) dispose the
participating agents.

3.2 Service Protocol

A registered user can initiate the service by sending a re-
quest to the service agent. The initiator agent must give all of
the initial parameters to the service agent before it migrates
into the iCOP host. The service agent invites other partici-
pants to join the computation and provides the initial parame-
ters to them including list of participants, problem description
such as name of the problem, list of variables to be assigned,
the domain of the variable values, the domain of personal val-
uation of certain variables etc. The initial parameters are sent
to the service agent before the participating agents migrate
into iCOP and before they share their private information.
Thus, the initial parameters cannot contain other agents’ pri-
vate data and it is safe to send them out of iCOP host with the
invitation. Upon getting the invitation, all participating agents
collect related necessary data based on the supplied initial pa-
rameters for the computation and migrate into the iCOP host.
The participating agents interact with each other and carry out
the computation by sharing their personal data.

In DCOPs and DisCSPs, all of the participants solve a com-
mon (set of) problem by negotiating their value assignment to
the variables and reach an agreement on the value assignment,
which satisfies all the constraints [11][15]. The participating
agents must follow a pre-defined format (defined by several

SA:
IA:

UA:

IA:
Collect input

UA:

<<Migration>>

IA: Initiator Agent
SA: Service Agent
UA: User Agent

User Host iCOP Host User Host

DisposeDispose

<<Migration>>

Invite (initial param)

Collect input

Service start request

Authentication

Initial param request

R

Sign(R1) Sign(R2)

Recover R1, R2

R

<Param (1) name, value>

<Param (n) name, value>

Negotiation

Agreement (R)

Negotiation

Compare (R1, R2)

Multi-signature (R)

Figure 4: Service protocol sequence diagram.

properties such as letter case, variable-value pair sequence,
date format, decimal point precision etc.) for creating the re-
sult consisting of set of variable names and their values. They
sign the computational result individually and pass it to the
service agent, which then recovers the result from individual
signed message with their respective public key. The service
agent verifies that the participating agents signed the same
message (i.e., none of them has not encoded hidden informa-
tion into the result) by exact matching the recovered messages
with each other. After this verification, the service agent cre-
ates the combined multi-signature [12] and sends the signed
result to the users. Finally, it disposes the participating agents
at the iCOP host. Figure 4 shows the simple service protocol
sequence diagram.

3.3 Result Format

The computational result consists of a set of variables and
constants. The result format defines the rules of constructing a
single message with its components’ name-value pairs so that
the result created by individual agent match with each other.
Each of its component value has a data type. We broadly
classify the data types as (1) integers (2) real numbers (3)
date (4) string, and (5) boolean and assume that the variable
names are string. The format should define at least following
characteristics (where applicable).
1. Component format

• Data type of each component (integer, string, date etc.)

• Character case of string type

• Number of digits after decimal point of real numbers

• Date format (“yyyy/mm/dd”, “mm/dd/yyyy” etc.)

- 109 -

ICMU2006

• Boolean value (T/F or True/False)

2. Appearance order of the component name-value pairs.
3. Separation character between component name-value pairs.

Suppose, the result consists of four components- one con-
stant and three variables x, y and z. Let the defined character-
istics be: (1) component format- {constant}<string><upper-
case>, x=<real><two digits> y=<integer> and z=<date>
<yyyy/ mm/dd>, (2) appearance order- {constant}, z, y, x,
and (3) separation characters- a comma followed by a space
“, ”. The first line of figure 5 is a valid result and the rest
of the lines (2-6) are not valid according to the rules stated
above. The figure points out the positions with circles where
it violate at least one of the rules.

The Result, z=2006/04/26, y=30, x=450.00

THE RESULT z=2006/04/26, y=30, x=450.00

THE RESULT, z=2006/04/26, y=30.0, x=450.0

THE RESULT, z=2006/26/04, y=30, x=450.00

THE RESULT, y=30, z=2006/04/26, x=450.00

THE RESULT, z=2006/04/26, y=30, x=450.00

The Result, z=2006/04/26, y=30, x=450.00

THE RESULT z=2006/04/26, y=30, x=450.00

THE RESULT, z=2006/04/26, y=30.0, x=450.0

THE RESULT, z=2006/26/04, y=30, x=450.00

THE RESULT, y=30, z=2006/04/26, x=450.00

THE RESULT, z=2006/04/26, y=30, x=450.00

Figure 5: Good (line 1) and bad (lines 2-6) formats of the
result according to the specified rules.

The rules mentioned here are not fixed for every context,
but it is necessary to define those characteristics of the com-
ponents to create a guideline for the participating agents to
create identical results (messages) that are to be matched with
each other by the service agent. In general, fixing the string
case or a specific date format or the appearance order of the
components does not affect the semantic much. Allowing dif-
ferent formats to represent the result creates the scope of hid-
ing information into it (as shown in Section 4.2) and enforcing
them to a fixed format prevents data hiding into it.

3.4 The Parallel Multi-signature Scheme

The parallel multi-signature scheme allows multiple sign-
ers to sign a message (result) separately and then combine all
individual signatures into a multi-signature [5][12]. It verifies
the authentication of the sender, message integrity and non-
repudiation. The signature process also ensures that all of the
signers sign the same message (result). We adopt the parallel
multi-signature scheme presented in [12].

3.5 Implementation Issue

The Java architecture has a reference monitor, which can
monitor and control the use of system resources [6]. But,
the Java security manager enabled JVM itself is not a one-
way closed-door platform. Thus, we use the Java architec-
ture and customize the Java security manager to make the
platform one-way and closed-door. The Java technology can
provide security to end user system against untrusted code
(e.g., applet from the Internet) by putting them into sandbox
and protecting them from security sensitive activities on local

system. However, it allows downloaded code in the sand-
box to connect back to the originator i.e., there exists open
channel between the sandbox of end user host and the orig-
inator host of the downloaded code. So, if the downloaded
code can get some information (due to sloppy security policy)
from local system, it can send the information to its originator.
In iCOP, even the server can be made secured from mobile
agents by activating the Java security manager with proper
policy, the agents of multi-party computation exchange their
private information in their problem solving process, which
is unavoidable. Thus, the agents get sensitive information
at the first place (due to the nature of the multi-party col-
laborative problem) without compromising the security man-
ager and can send the acquired information to their originator
hosts.

In iCOP, for any system resource access request, the pri-
vacy manager inspects the system class stack corresponding
to the current series of method call and checks if there is any
external class (i.e. migrated agent) in the system class stack
by checking their code bases. It denies the access request if
it finds any external class in the class stack. This restricts the
mobile agents from any type of communication with the out-
side world or from migration to other hosts from the iCOP
host.

Customizing the Java security manager to close all chan-
nels, which may be used by the mobile agents, can prevent
them from leaking out any information. However, without
sending the computational result to the users, the system be-
comes useless. It needs a mechanism to send the computa-
tional result to the users. iCOP uses a trusted service agent
for this. To ensure that the mobile agents don’t send hidden
information through the result sending process, the service
agent (along with the participating agents) performs security
check and creates a multi-signature on the computational re-
sult before sending it to the users.

A service agent can be a signed agent from a reputed de-
veloper and installed locally on iCOP which is capable of car-
rying out four jobs as listed in Section 3.1. It is assumed to
be trusted and not malicious. Many service instances can be
run by instantiating separate Java virtual machine for them. A
user may build her own participating mobile agent or may use
agents created by professionals.

4 ANALYSIS

Data disclosure requires a disclosure channel (open or covert)
from the agent platform to the outside world. In iCOP, the
participating agents are protected from accessing system re-
sources, using which they can leak out the personal data ac-
quired in the negotiation with other agents or take them away
during migration to other hosts. So, the participating agents
cannot use an open channel. However, they may try to leak
information though a covert channel.

- 110 -

ICMU2006

4.1 Covert Channel

Covert channels generally remain unnoticed because of covert
means in which information is communicated. From various
covert channels explored by researcher [1][13], we can say
that there are at least three basic requirements for a covert
channel. (1) The sending and receiving process must have
access to the same attribute of the shared resource (variable).
(2) The sending process must be capable of changing the at-
tribute. (3) The receive process must be capable of detecting
the change in attribute. Figure 6 shows the modular concept
of covert channel. There are two types of covert channels [1]
(a) storage channel and (b) timing channel. Various examples
can be found in papers [1][13].

Shared variableWrite

(Signaling)

Read
SenderSender ReceiverReceiver

Figure 6: Covert channel.

All processes including the participating agents use some
common system resources like memory and CPU. But, other
system resources like file system, communication socket, printer
etc. are restricted for the participating agents. However, since
a large number of processes share those common system re-
sources, covert channels through those resources are extremely
noisy and the channel bandwidth will be very low. Besides,
the receiving process must reside in the system itself to probe
the attributes of those common resources to interpret the sent
data.

The computational result is shared between the participat-
ing agents and the outside receivers (i.e. users). Thus, it is
a potential noiseless covert channel between a participating
agent and a result receiver. A participating agent may try to
encode the acquired private data of other agents into the com-
putational result and try to send the innocent-looking compu-
tational result to its user through the service agent.

The art of sending hidden data is known as steganography
and the analysis of steganography to detect hidden message is
called steganalysis [2]. Following we present some steganog-
raphy techniques to analyze their characteristics.

4.2 Steganography and Steganalysis

Steganography generally requires some kind of modulation
on the original object. In our context, the original object refers
to the computational result created by the agents based upon
their agreement in the negotiation using the pre-defined for-
mat. The modulation technique uses some kind of protocol to
encode information and the receiver need to perform related
demodulation to interpret the encoded data. Different kinds
of modulation are possible. Following are some examples.

Adding text: The sender adds additional characters like
whitespace, punctuation marks or decimal point in numerical
values etc. without changing the semantic of the text. Table 1
shows a simple protocol.

Suppose, the first line of Figure 7 is the original object; then
with the protocol shown in Table 1, the second line contains

Table 1: Steganography protocol by adding characters

Signal Means
Additional 1 whitespace 00
Additional 2 whitespace 01
Additional 1 digit with numerical value 10
Additional 2 digit with numerical value 11

hidden data “010000011110”. But, semantically both lines
are equivalent.

This is the computational result, x=3, y=2

This is the computational result, x=3.00, y=2.0

Figure 7: Hiding data by adding extra characters.

Arranging components: An object may possess the same
semantic even after re-arranging its distinguishable compo-
nents. For example, a date may be represented with different
formats as shown in table 2. With the protocol shown in Ta-
ble 2, to send “101” the sender must send a date value in the
“yyyy/dd/mm” format. Similarly, by choosing a sequence of
the variable name-value pairs, a number of bits can be trans-
ferred covertly.

Table 2: Steganography protocol by arranging components

Format Means Format Means
dd/mm/yyyy 000 mm/yyyy/dd 011
dd/yyyy/mm 001 yyyy/mm/dd 100
mm/dd/yyyy 010 yyyy/dd/mm 101

Changing case: Data can be encoded by changing the case
of certain alphabets (e.g., start of each sentence, first alphabet
of each word or an alphabet of any position) of the text. With
the protocol shown in table 3, the text “This is the Computa-
tional Result” contains hidden data “10011”.

Preventive Mechanism: In order to prevent agents from
hiding private information in the computational result, iCOP
policy obligates the participating agents to represent the com-
putational result individually in a pre-determined format de-
fined by several characteristics of the result components as
described in Section 3.3. This policy is enforced by the re-
quirements (which is checked by the service agent) that the
computational results passed by individual agent must match
with those of other agents. The participating agents mutu-
ally protect each other from encoding data into the result by
passing its copy of the result to the service agent. Note that,
it is necessary for the participating agents to have a common
computational result (which is a characteristic of multi-party
collaborative computing as described in Section 2) created by
negotiation and known to each of them. Thus, if a participat-
ing agent encodes secret information in its computational re-
sult, the result passed by it to the service agent will not match

- 111 -

ICMU2006

Table 3: Steganography protocols by changing case of alpha-
bets

Format Means
Capital letter 1
Small letter 0

with those passed by all other participants regardless of the
encoding method and the content type of the computational
result.

The service agent can only detect that some of the partic-
ipants probably has encoded secret information in its result
(when there is any mismatch) but cannot determine which
agent(s) has done that. When detected hidden data in the re-
sult, it will not send it to any of the users. Thus, we see that
the identical result requirement policy protects participating
agents from using covert channel through the result sending
process.

Non-modulating: Information may also be sent with the
computational result without encoding into the computational
result. In our investigation, we found one such approach that
we call the result biasing method. If there are s numbers of
possible solutions of a given problem, an agent may try to
bias all participants towards a specific valid solution in the
negotiation process. For example, in the meeting scheduling
problem, if there are 4 slots (among a number of candidate
slots), in any of which all of the participants can attend the
proposed meeting (i.e., all of the constraints are satisfied), the
bits ’00’, ’01’, ’10’ and ’11’ may be signaled to the receiver
by biasing the meeting slot into solution number 1, 2, 3 and
4 respectively. The number of transferable bits by this tech-
nique is,

b = log2(s) (1)

The encoding/decoding protocol between a sender inside
iCOP and an outside receiver must be defined before the agent
migrates into iCOP. Thus, the protocol will depend upon the
knowledge of the agent about the possible solution set of the
problem.

Table 4: A simple example of result biasing protocols

Soln. no. Means Soln. no. Means
1 000 2 001
3 010 4 011
5 100 6 101
7 110 8 111

In conclusion, we can say that in iCOP, the open channels
as well as covert channels using system resources are pro-
tected by the privacy manager. The potential covert channel
through the result sending process is checked by the trusted
service agent in cooperation with the participating agents. But,
the result biasing method for sending hidden information may
not be possible to detect, avoid, or prevent. However, it is a

transient channel [1] through which only few bits may be pos-
sible to leak out.

5 EVALUATION

The main purpose of the proposed mobile agent based com-
puting model and its required components is to enhance pri-
vacy in multi-party collaborative computing. Thus we evalu-
ate the model by comparing the privacy loss for a collabora-
tive problem with the well-known ADOPT algorithm [11] in
this model and in the traditional distributed model. Since, the
agents solve the problem by using a server, instead of multiple
hosts like in distributed model, we also compare the compu-
tational costs in the two systems.

5.1 Privacy

The meeting scheduling problem is a multi-party collab-
orative computing problem where privacy might be impor-
tant. Thus, to evaluate the effectiveness of the proposed mo-
bile agent based model in privacy protection, we consider the
meeting scheduling problem. Researchers commonly observe
that the majority of scheduling instances will consist of a
small number of meetings that need to be negotiated simul-
taneously [7][16].

In our investigation, we found that the privacy loss in iCOP
may occur through a covert channel using the result biasing
method, which we described in Section 4.2. This channel
is a transient channel [1] that can transfer a fixed number
of bits, which depends upon the number of valid solutions
of the given problem that meet all the constraints. Privacy
loss was measured using VPS metric [9], which accounts for
the fraction of participants to whom the private information
(represented in states) is revealed and the fraction of states,
which are revealed to others. Privacy loss was also measured
in MAX metric [7], which accounts for the maximum pri-
vate information revealed to any participant. We considered
the ADOPT algorithm for two scenarios in conventional dis-
tributed model and in our mobile agent based model. For the
purpose of analysis, maximum privacy loss in iCOP is shown.
Figure 8(a) shows privacy loss in VPS (EntropyTS) metric for
different number of valuation for two scenarios. Figure 8(b)
shows the graph in MAX metric for the same settings. The
maximum privacy loss in iCOP is limited by the number of
transferable bits through the result sending channel and can
be said to be independent of algorithm used to solve the prob-
lem (unless the algorithm itself results in less privacy loss).

The privacy loss in iCOP decreases with the number of val-
uations because the measurement counts the fraction of states
that have been revealed. In iCOP, a fixed number of bits are
revealed making the fraction decrease as the total states in-
crease. ADOPT algorith was shown to be the most efficient
(using conventional distributed computing model) among the
available DCOP algorithms in privacy protection by algorith-
mic mechanism [7]. The amount of privacy loss in other al-
gorithms are higher than that in ADOPT algorithm. Thus, we
can conclude that the available distributed algorithms can en-

- 112 -

ICMU2006

0

0.2

0.4

0.6

0.8

1

3 4 5 6 7

Number of valuation

P
ri

v
a

c
y

 l
o

s
s

Dis (Sc 1)

Dis (Sc 2)

iCOP (Sc 1)

iCOP (Sc 2)

a) Privacy loss in VPS(EntropyTS) metric

0

0.2

0.4

0.6

0.8

1

3 4 5 6 7

Number of valuation

P
ri

v
a

c
y

 l
o

s
s

Dis (Sc 1)

Dis (Sc 2)

iCOP (Sc 1)

iCOP (Sc 2)

b) Privacy loss in MAX metric

Figure 8: Privacy loss in ADOPT algorithm using distributed
model and iCOP.

hance privacy protection by using our proposed mobile agent
based computing model.

We believe that leaking information through a covert chan-
nel using result biasing method might be very difficult be-
cause it needs to have a number of valid solutions and also
the sender needs to bias all participants to a specific valid so-
lution.

5.2 Computational Time

For computational time measurement, Cycle-Based Run-
time (CBR) metric [3] appears to be the most appropriate one
for distributed algorithms. It considers concurrency of the
agents and latency of the underlying communication environ-
ment as described in paper [3]. The computational unit of dis-
tributed algorithm is expressed with cycle, which is defined as
the time duration in which all agents receive all their incom-
ing messages and send out all their outgoing messages [11].
Total runtime of m cycles is represented by

CBR(m) = t × ccc(m) + L × m (2)

where, t is the time required for one constraint check, m is
the number of cycles, ccc(m) is the number of concurrent
constraint check in m cycles and L is the communication la-
tency between cycles. The value of L is represented in terms
of number of constraint check, considering that one constraint
check is the smallest unit of time. For measuring the commu-
nication latency, we used two hosts (Host A and Host B) con-
nected in typical campus network. Host A was an IBM Lap-
top running Microsoft Windows XP with 768 MB of RAM,
100Mbps LAN card, 1.4 GHz Intel processor using the SUN
Java 2 Software Development Kit (J2SDK) 5.0. Host B was
an IBM Laptop running Microsoft Windows XP with 256 MB
of RAM, 100Mbps LAN card, 1.8 GHz Intel processor using

the SUN Java 2 Software Development Kit (J2SDK) 5.0. In
host A, a total of 106 language level key instruction took about
8ms and round-trip messaging latency between the two hosts
was measured as about 8ms. Considering no more than 1000
language level key instructions per constraint check, the value
of L for message exchange in the distributed model will be no
less than 1000.

On the other hand in iCOP, the latency for local messages
between two agents is very small and can be assumed to be
no greater than one constraint check. But all of the participat-
ing agents need to migrate to the agent server, increasing the
latency in iCOP. For a 23KB agent, it took about 21ms to mi-
grate (including serialization and de-serialization) from one
host to another in Aglet environment [8]. So, we consider that
the latency for agent migration is no more than 3000 in our en-
vironment. It is noteworthy that unlike distributed model, the
execution cycle in iCOP is serial instead of concurrent. Also
note that the values that we found in our measurement will
not be the same in other environments.

0

50000

100000

150000

200000

250000

300000

8 12 16 20

Number of agents

C
B

R Distributed

iCOP

a) For different number of variables

0

20000

40000

60000

80000

100000

1101001000

L

C
B

R

Distributed

iCOP

b) For different values of L

Figure 9: Comparison of computational time for ADOPT al-
gorithm in distributed model and in iCOP using CBR.

Figure 9 shows the CBR for the graph 3-coloring problem
(which we take as an example to show the effect of large
number of variables) with ADOPT algorithm in the mobile
agent based model and in conventional distributed model for
the same experimental settings. From Figure 9(a) we see
that iCOP outperforms distributed model for small number
of variables. The CBR of ADOPT in the conventional dis-
tributed model is high mainly because of its large number
of cycles, which increases the communication latency. But
for higher number of variables, the total number of (serial)
constraint check in iCOP becomes very large. Thus, we can
conclude that when the number of variables is small, ADOPT

- 113 -

ICMU2006

takes less cycle-based runtime in our mobile agent based model
than in the distributed model. In the networks that are faster
than the one we used in our experiment, the performance of
distributed model increases significantly. Figure 9 (b) shows
(for 12 agents) that the distributed model outperforms iCOP
in high speed networks having lower value of latency between
cycles.

The computational time of another well-known algorithm
OptAPO [10] is expected to be worse than that of ADOPT
[3]. Thus, we believe that for small number of agents, the
computational time of OptAPO in our mobile agent based
model will also be less than that in the conventional distrib-
uted model, when used in typical networks. But, in very high
speed networks and for large number of agents, the conven-
tional distributed model will outperform mobile agent based
model, since the constraint check are effectively serial in mo-
bile agent based model that uses agent server.

6 CONCLUSION

Privacy is viewed as a crucial issue in autonomous sys-
tems, like in ubiquitous environment. We have presented a
mobile agent based privacy enhancing computing model for
multi-party collaborative computing. We evaluated the pro-
posed model in terms of privacy loss and found that the pri-
vacy protection using our proposed model is very efficient
and probably only few bits of data can be leaked out through
covert channels. In a very high speed network, our proposed
model requires larger computational time than the conven-
tional distributed model, when the number of participants is
very large. However, for smaller number of participants, the
proposed model requires less computational time than the dis-
tributed model. While considering computational time, the
proposed model is suitable for typical networks that are avail-
able widely and especially more suitable for slower networks
like wireless networks.

REFERENCES

[1] American National Computer Security Center, A guide
to understanding covert channel analysis of trusted
systems, http://www.fas.org/irp/nsa/rainbow/tg030.htm,
NCSC-TG-030, Ver. 1, (1993)

[2] Bennett, K., Linguistic steganography: survey, analysis,
and robustness Concerns for hiding information in text,
CERIAS Tech Report 2004-13, (2004).

[3] Davin, J., Modi, P., Impact of problem centralization
in distributed constraint optimization algorithms, Proc.
of Autonomous Agents and Multi-Agent Systems (AA-
MAS’05), pp. 1057-1063, (2005).

[4] Du, W. and Atallah, M. J., Privacy-Preserving Cooper-
ative Scientific Computations, Proc. of the 14th IEEE
Workshop on Computer Security Foundations, Canada,
pp. 273-282 (2001).

[5] Frankel, Y. and Y. G. Desmedt, Parallel Reliable Thresh-
old Multisignature, Tech. Report TR- 92-04-02, Dept. of
EE. and CS., Univ of Wisconsin - Milwaukee (1992)

[6] Gong, L. Ellison, G. Dageforde, M., Inside Java 2 Plat-
form Security: Architecture, API Design, and Imple-
mentation (2nd edition), Addison-Wesley Professional
(2003).

[7] Greenstadt, R. Pearce, J. P. Bowring, E. and Tambe, M.,
Experimental analysis of privacy loss in DCOP algo-
rithms, Pro. of Third Int. Joint Conf. on Autonomous
Agents and Multiagent Systems (AAMAS’06), Hako-
date, Japan, (2006).

[8] Lange, D.B. Oshima, M., Programming and Deploy-
ing Java Mobile Agents with Aglets, Addison-Wesley,
(1998).

[9] Maheswaran, R. T. Pearce, J. P. Bowring, E. Varakan-
tham, P. and Tambe, M., Privacy Loss in Distributed
Constraint Reasoning: A Quantitative Framework for
Analysis and its Applications, Journal of Autonomous
Agents and Multi-Agent Systems, Springer, Vol. 13,
No.1, pp. 27-60 (2006).

[10] Mailler, R. and Lesser, V., Solving distributed con-
straint optimization problems using cooperative medi-
ation. Pro. of Third Int. Joint Conf. on Autonomous
Agents and Multiagent Systems (AAMAS’04). New
York, pp. 438-445 (2004).

[11] Modi, P. J. Shen, W. Tambe, M. Yokoo, M., ADOPT:
Asynchronous distributed constraint optimization with
quality guarantees. Artificial Intelligence Journal (AIJ).
Vol. 161, pp. 149-180 (2005).

[12] Shieh, S.P. Lin, C.T Yang, W.B and Sun, H.M., Digital
Multisignature Schemes for Authenticating Delegates in
Mobile Code Systems, IEEE Transaction on Vehicular
Technology, Vol. 49, No. 4, pp. 1464-1473 (2000).

[13] Tsai C. R. and Gligor, V. D., A Bandwidth Computa-
tion Model for Covert Storage Channels and Its Appli-
cations, IEEE Symposium on Security and Privacy, pp.
108-121, (1988).

[14] Yao, A., Protocols for secure computations, Proc. of the
23rd Annual IEEE Symposium on Foundations of Com-
puter Science, (1982).

[15] Yokoo, M. Durfee, E. H. Ishida, T. and Kuwabara, K.,
The Distributed constraint satisfaction problem: formal-
ization and algorithms, IEEE Transactions on Knowl-
edge and Data Eng., Vol.10, No.5, pp. 673-685 (1998).

[16] Yokoo, M. Suzuki, K. and Hirayama, K., Secure distrib-
uted constraint satisfaction: reaching agreement with-
out revealing private information, Artificial Intelligence,
Vol.161, Issue 1-2, pp. 229-245, (2005).

- 114 -

ICMU2006

