
Walkabout: Asynchronous Messaging Support for Mobile Devices

Adam Hudson and Bob Kummerfeld

School of Information Technologies
The University of Sydney, Australia
{ahudson, bob}@it.usyd.edu.au

ABSTRACT

We propose Walkabout, an asynchronous Internet messag-

ing architecture designed to support data transmission between

mobile devices with intermittent connections. A Walkabout-

enabled device sends data messages via a proxy within its lo-

cal network. The proxy creates a peer-to-peer overlay with

other proxies in remote networks to deliver each message to

the destination device(s). The overlay caches the message if

a destination device is unavailable, migrates the message to

follow devices as they move, and allows devices to resume

uploads or downloads from different locations if interrupted.

In this paper, we present the design of the architecture and its

associated protocols. We present some potential applications,

and show through simulation that Walkabout maximises local

network use and provides significantly faster delivery times

than the existing alternative methods under a range of device

mobility patterns.

Keywords: mobility support, asynchronous messaging, net-

work architectures.

1 INTRODUCTION

The processing, networking and storage capabilities of mo-

bile devices are constantly improving. For example, Kodak’s

EasyShare-one range of digital cameras are equipped with

wireless networking, Nokia’s N93 provides video recording

and wireless networking on a phone, and the Ultra-Mobile

PC from Microsoft has all the power of a tablet PC in a tiny

form factor. Devices such as these typically run software to

backup, share or retrieve files across the Internet. While they

do have the necessary hardware to enable these transfers, in

reality there are a number of challenges that they face.

The first problem is that network connectivity is not always

available, so direct transfer techniques are not always suitable.

In particular, if the sender and receiver are both mobile, it may

be difficult for both to obtain a connection simultaneously so

that the transfer can proceed. Asynchronous messaging so-

lutions such as publish/subscribe messaging, message queues

and blackboards can help to overcome this, by providing an

intermediate storage point that removes the requirement for

simultaneous connection.

The second problem is that as a result of their increased ca-

pabilities, these devices may want to transfer large data files

such as images, audio and video that can reach many hun-

dreds of megabytes in size. Depending on the available Inter-

net speeds, these transfers could take many minutes or even

hours, so even if a mobile device has network connectivity, it

may not always be practical or possible to maintain network

connectivity long enough to complete them.

We propose an asynchronous messaging architecture, called

Walkabout, that takes advantage of local network caches to

support data transfers where one or more of the participants

is a mobile device, and thus overcome these problems.

When a Walkabout-enabled client device joins a network, it

locates a proxy server on the local network and then connects

to it. The proxy accept messages from clients and transfers

them to other proxies across the Internet, caching uploads and

downloads in a way that allows clients to maximise their use

of the network connection time available to them. If a trans-

fer is interrupted, it can be resumed when the device recon-

nects. A peer-to-peer message overlay network is created for

the delivery of each new message, incorporating all the prox-

ies contacted by the sending and receiving devices. Messages

are discrete and can range from small inter-application mes-

sages up to large media files of many hundreds of megabytes.

The main contribution of this paper is an architecture that

makes Internet data transfers involving mobile devices prac-

tical, especially when connectivity is limited. We show that

when the producer is mobile or the consumer is mobile and

repeatedly visiting the same location, Walkabout reduces the

amount of network connection time that a mobile device re-

quires to complete a transfer, while simultaneously improv-

ing the end-to-end transfer speeds, in comparison to alterna-

tive techniques. The levels of improvement are proportional

to how much faster the local wireless network is compared

to the Internet link. The resultant system enables a number

of applications that require large data transfers to and from

mobile devices.

The remainder of this paper is organised as follows: Sec-

tion 2 presents some application scenarios for Walkabout; Sec-

tion 3 details the key system components while section 4 out-

lines the protocols and algorithms that drive it; Section 5

presents our evaluation of the system and its performance;

Section 6 outlines the differences between Walkabout and sim-

ilar systems; Finally, section 7 describes some future possibil-

ities and concludes the paper.

2 APPLICATIONS OF WALKABOUT

This section presents some motivating scenarios for Walka-

bout, involving mobile uploads, mobile downloads and trans-

fers between mobile devices. They illustrate some of the ap-

plications that become possible when there is a rapid form of

asynchronous messaging available to a mobile device.

- 215 -

ICMU2006



2.1 Upload From Mobile Device to a Server
Applications for the transfer of user-created content to fixed

servers across the Internet are a major motivator for Walka-

bout, and figure 1 presents an example of this. In this photo

backup application, a person takes their WiFi enabled camera

with them on holidays. As they walk around taking photos,

they come into contact with many wireless access points that

provide a Walkabout proxy. The camera uses these opportu-

nities to offload any new photos to the local proxies as quickly

as the wireless network allows. If a transfer is interrupted, it is

simply resumed at the next available opportunity. The prox-

ies deliver the data across the Internet to a media server in the

person’s home, where the photos are stored permanently. The

photos are now available in a stable location for family and

friends to browse, and they can be deleted from the camera if

more storage space is required.

Proxy

Proxy

Proxy

Server

Photo

Photo

Figure 1: A camera uploads photos to a home server using

Walkabout as it moves between networks.

These same principles could be applied to video, audio,

or scientific data collection while in the field. Destination

servers could be managed personally, by an organisation, or

provided by a company for a fee.

Practical upload services have several benefits. Mobile de-

vices are prone to loss, corruption and tend to have limited

storage, so transferring content to a safe location protects the

data, while simultaneously freeing up space on the device for

more content. It also simplifies content publication, as de-

vices can make their data available for others to access with

only minimal network connection time required.

2.2 Download to Mobile Device From a Server
Portable media devices can often hold in the order of giga-

bytes of data, but this still tends to only be a subset of what

a user owns or has access to. Walkabout messaging opens

up possibilities for users with wireless multimedia devices to

access remote files while on-the-move. A user can select a

video file, for example, from a list of the contents of their

home media server, then lodge a request across the Internet

to download it. The server sends the file to their handheld

video player, which downloads as much as possible each time

it has Internet access, until the file is complete and ready for

viewing. This same technique could also be applied to enable

mobile devices to purchase media directly from online stores.

These applications could be extended to remove the need

for requests, by incorporating modelling and smart environ-

ments. Take the example of a media server that records tele-

vision shows. It knows that the user likes to watch the 7pm

news, so it records the program automatically each night. How-

ever, if the smart environment detects that they are not at

home, it actively sends the program, via Walkabout, to the

mobile device that it decides to be the best, which could be

their laptop, their phone, or any other device they regularly

have with them.

2.3 Transfer Between Mobile Devices
The main advantage that asynchronous messaging offers

for transfers between mobile devices is the ability to exchange

data without being simultaneously connected. SMS and MMS

are existing examples of this, but the ability to transfer larger

files opens up the potential for audio and video messaging ap-

plications. The University of Sydney’s Keep-in-Touch family

messaging system [1] could be extended to incorporate mo-

bile devices, for example.

Another application could be the trading of user-created

game content, such as character models or maps, on portable

gaming devices like the Nintendo DS or Sony PSP.

3 ARCHITECTURE OVERVIEW

Whenever it acquires a network connection, a Walkabout

client device uses Apple’s Bonjour1 service discovery proto-

col to find a proxy and register with it. When a producer client

wishes to send a message, it uploads a header describing the

message contents and destinations to its proxy, followed by

pieces of the message as fast as the local network will allow.

The proxy uses the location-independent address of each con-
sumer device to contact the proxy they were last connected to,

which then downloads message pieces, stores them, and for-

wards them to the consumer if it is still connected.

All of the proxies involved in the transfer of a given mes-

sage locate each other via a message tracker, and join together

to form a peer-to-peer overlay. This can enable parallel down-

loads when multiple proxies have message pieces available,

either as a result of client mobility or a message sent to mul-

tiple consumers. Figure 2 illustrates an overlay of three prox-

ies, for the delivery of a message to three consumers.

Any time a client moves and connects to a new proxy, its

registration causes messages delivered to the old proxy in its

absence to migrate to the new location for download. Sim-

ilarly, if the client moves while it is uploading, it is able to

resume the transfer upon reconnection.

The roles of the system components are explained in more

detail below, and the full details of the registration and trans-

fer protocols are explained in section 4.

3.1 DOLR Service
Walkabout requires a scalable mechanism for proxies to

contact clients and message trackers, and this is something

1http://www.apple.com/macosx/features/bonjour

- 216 -

ICMU2006



Proxy Proxy

Proxy

Consumer
(Client)

Consumer
(Client)

Consumer
(Client)

Producer
(Client)

Message
Tracker

Figure 2: A Walkabout overlay network.

that a distributed object location and routing (DOLR) ser-

vice such as Tapestry [14] can provide. DOLR enables a net-

work node to associate a data object it holds with some glob-

ally unique identifier, such that other nodes can deliver mes-

sages to this identifier, and hence the node, in a scalable man-

ner. Therefore every proxy joins a global DOLR service upon

startup, which could be based on Tapestry or any other sys-

tem that provides the same functions. Proxies publish entries

when they accept a new client registration or create a mes-

sage tracker in response to a new message, and other proxies

route messages to them via DOLR. Hereafter, any time we

say a message is routed, this means it was sent via the DOLR

service.

3.2 Messages

The basic unit of message transfer is the piece. Messages

are broken into fixed-sized pieces by the producer, the size of

which are chosen on a per-message basis.

Every message transfer is preceded by a header, which the

producer creates when it is ready to send the message. This

header details the message properties, such as the total data

length, piece size, piece hash signatures, and the identities of

the consumers it is to be delivered to. The piece hash signa-

tures allow nodes to check the validity of individual pieces af-

ter downloading them. Once created, a header is immutable,

so the SHA-1 hash of the combination of all its fields uniquely

identifies the message. This hash is henceforth referred to as

the message signature.

Together, the proxies that have or seek pieces of a given

message form a peer-to-peer overlay network that exists only

for the lifetime of the message. Message trackers are the cen-

tral store of information about an overlay, monitoring which

proxies are overlay peers and the delivery status of each of

the message’s consumers. The first proxy to receive the mes-

sage header from the producer creates the tracker, publishes

the message signature to the DOLR service, and manages any

subsequent updates. Overlay peers route requests and updates

to the tracker using the message signature as the address.

3.3 Client
A client is an application that runs on a device and manages

the transfer of messages to and from the overlay via its local

proxy. The device may be fixed or mobile. Each client has an

RSA key pair which it uses as the basis for identification and

cryptography. In particular, the SHA-1 hash of the client’s

public key (or key hash) serves as a globally unique identifier.

A proxy publishes a client location entry to the DOLR service

whenever a client connects to it, associating the key hash with

the proxy’s own globally accessible IP address. This allows

other proxies to send data to the client’s last point of attach-

ment by simply providing the key hash.

3.4 Proxy
A proxy is a network service that provides client connec-

tion, message transfer, caching and overlay maintenance func-

tions. One would typically exist on a single dedicated ma-

chine within a private network, similar to a web proxy. It

could be provided as a free service to trusted users in a home

or office environment, as additional value to accompany other

services, e.g., in a café, or as a wide scale subscription service

deployed alongside wireless access points.

Proxies receive message pieces for upload from clients, and

download them from their peers. Any pieces they acquire

are held in a cache as long as possible, so that they may be

delivered to clients connected locally, or downloaded by any

other proxies that may need them.

Bonjour enables network service discovery both locally and

across wide-area networks like the Internet. Therefore prox-

ies implement Bonjour services, so that clients can find them

within local networks, or remotely if necessary.

4 PROTOCOLS

A complete transfer requires several steps. First, the pro-

ducer uploads some or all of a message when it is connected

to a proxy. The overlay transfers this message to the appro-

priate proxies, and the consumers download the message from

them. When all of the consumers have acknowledged or re-

jected the message, the transfer is complete. The following

section explains how each of these steps work.

4.1 Client Connection
A client needs to find a proxy before it can access the sys-

tem, so it searches the local network by sending out a Bon-

jour request. It connects if it finds a local proxy, otherwise

it searches for a remote one. While it is preferable to use a

local proxy, it is unlikely that one will be available in every

network, so a remote proxy may be the only option at times.

When it accepts a new client registration, the proxy pub-

lishes the client’s key hash to the DOLR service and contacts

the client’s previous proxy (at the address provided within the

client registration). If it has any undelivered messages for the

- 217 -

ICMU2006



client, the previous proxy sends across the message headers,

and the transfer protocol is initiated as required.

4.2 Client Upload
When sending a new message, a producer first selects which

consumers it wishes to deliver it to. Depending upon the ap-

plication, the key hashes it selects could be pre-configured

(e.g., for a backup server) or chosen from a list obtained via

out-of-band means (e.g., from friends over email).

The producer initiates the upload to the proxy by transfer-

ring a header, then message pieces as fast as the local network

will allow. Each time a piece upload is complete, the proxy

verifies it against the hash in the header and acknowledges it if

it is valid. This continues until the entire message is uploaded

or the producer disconnects. If a transfer is interrupted, the

producer sends the header again upon reconnection and re-

sumes the upload from the first unacknowledged piece.

The proxy routes a request to the tracker to join the mes-

sage overlay, or creates a tracker if it finds that none exists.

It uses the information from the tracker to determine which

consumers are still waiting for the message, then routes the

header to each one’s last location. The proxies that receive

the header may then choose to initiate transfer of the message

on behalf of their clients.

4.3 Transfers
Message transfers across a Walkabout overlay are inspired

by peer-to-peer file transfer protocols such as BitTorrent [4].

They are driven by receiving proxies and make use of parallel

uploads and downloads where possible.

Message states are communicated between nodes by way

of piece maps, which are strings containing as many bits as

there are pieces in the message. If a bit is set, it indicates

that the proxy has that piece. These maps are generally quite

small, e.g., a one gigabyte file transmitted as 256KB pieces

generates a map of only 512 bytes.

The transfer negotiation begins when one proxy receives

a message header from another. The proxy starts by finding

which pieces, if any, its connected consumers want. It for-

wards the header to each of them, and expects a piece map

detailing which pieces they want in reply. It assumes they

want the entire message until it receives a response (which

may never happen if the client has disconnected), and starts

downloading immediately from the proxy that delivered the

header. A consumer may also choose to reject the transfer

completely, which leads the proxy to route a rejection notifi-
cation to the tracker.

Next, the proxy joins the message overlay, and retrieves

the list of peers and undelivered consumers from the tracker.

It queries each peer to find what pieces they can offer, then

downloads unique pieces concurrently from as many peers as

possible.

Data transfers between proxies are performed in blocks,

which are 1
16 the size of a piece. Proxies pipeline requests,

by requesting several blocks simultaneously from each peer.

Once a proxy collects all 16 blocks of a piece, it verifies the

piece against the hash value in the header. If successful, the

proxy updates its download status to its peers, and delivers the

piece to any connected clients that want it. Should the verifi-

cation fail, whether due to a transmission error or a malicious

peer, then the entire piece needs to be downloaded again.

A proxy uses a set of heuristics to select which pieces, and

therefore which blocks, to request from which peers. Based

upon BitTorrent, these heuristics aim to maximise overall net-

work availability by requesting the rarest pieces first, but are

augmented with additional rules to satisfy client needs as

quickly as possible. A proxy continues downloading blocks

on behalf of a client until it has all the pieces that the client

wants, or the client connects to a different proxy.

4.4 Client Download
The final phase of a Walkabout transfer is the delivery of

message pieces from a proxy to a connected consumer. If

the proxy already has pieces of a message for the consumer

in its cache when the consumer connects, the proxy delivers

them immediately at local speeds. Once the unique pieces

in the cache are exhausted, or if the consumer is connected

when the message header first arrives, pieces are streamed as

the proxy finishes downloading them. The client verifies each

piece against its hash and acknowledges its receipt if valid.

Once the consumer has received all the message pieces it

wants, the proxy routes a delivery notification to the message

tracker.

4.5 Shutdown
A transfer is complete when every consumer has either down-

loaded or rejected the message. At this point, the producer

and the peers need to be informed of the status, so that the

tracker can be shut down and the overlay dismantled.

Peers route delivery and rejection notifications to the tracker

as appropriate, which in turn forwards them to the producer.

When the tracker knows that every consumer has either down-

loaded or rejected the message, it informs each of the peers in

its list that the overlay is no longer needed. They acknowl-

edge this, remove themself from the overlay and delete any

pieces of the message they have in their cache. Similarly,

once the producer knows that every consumer is accounted

for, it routes a producer shutdown message to the tracker.

Once the tracker has received shutdown messages from the

producer and all of the peers, it is no longer needed, so the

proxy housing the tracker deletes it.

5 EVALUATION

To evaluate our model, we constructed a series of experi-

ments using the OMNeT++ / INET framework [12]. Each ex-

periment measures the comparative performance of the proxy-

supported asynchronous delivery model of Walkabout, a di-

rect synchronous model and a centralised server-based asyn-

chronous model under different device mobility conditions.

The test network used in all the experiments contains 200

router nodes connected to a simplified Internet node by

- 218 -

ICMU2006



100KB/s symmetric links with 10ms latency. Transfers across

the Internet experience a delay proportional to the “distance”

between the routers.

There are 64 consumer clients and 1 producer client in

our network, and each one connects to a randomly assigned

starting router over a 2MB/s link (simulating a good quality

802.11g connection). Our wireless model is simplified, as we

are trying to isolate the mechanisms of our protocol from the

effects of interference and signal strength, so a device always

has a constant signal quality.

The Walkabout model has a single proxy connected to the

router in each network via a 10MB/s Ethernet link. Any DOLR

traffic is simulated by subjecting the message to an additional

random 0.5-1.5 second delay during its delivery.

The centralised model also attaches a single server to a ded-

icated router with an effectively infinite Internet bandwidth

and 1ms link latency, which clients register with when they

connect to the Internet. The producer uploads its message

directly to the server while it is connected, and the server for-

wards it on to the consumer when the upload is complete. In

both this and the direct model, transfers interrupted through

disconnection resume their exact position within the byte

stream upon reconnection.

The direct model requires both the producer and consumer

to be connected simultaneously for the transfer to take place.

We assume that the producer always knows when and where

the consumer is connected.

The main intended use of Walkabout is for the transfer of

large files, particularly multimedia. Therefore, our experi-

ments are run using either 5MB files, representing music files

or high-resolution images, or 200MB files, representing half

an hour of video. When the producer initiates a transfer, it

randomly selects a consumer and starts sending the message.

Due to the symmetrical topology used in our simulations,

the results obtained for each run are very similar, and hence

have very low standard deviations of less than 0.5%, which

has been omitted from the tables and figures.

5.1 Fixed Producer and Consumer

In this simple experiment, the end-to-end delivery times

and application data overheads are measured when both the

producer and consumer are fixed devices. 100 simulation runs

were performed for each model using both 5MB and 200MB

files, with separate runs for 256KB and 4096KB pieces under

Walkabout.

While Walkabout is aimed at a mobile scenario, it is ex-

pected that it should still exhibit an acceptable level of perfor-

mance in the static case, and our results support this. Table 1

shows the end-to-end delivery times for each of the models.

Being the simplest, direct is the fastest for both file sizes, with

centralised taking twice as long. Walkabout is only slightly

slower than direct on average for both piece sizes. This is

primarily due to the DOLR delay during the initial transfer

establishment, and also due to the slight increase in overall

traffic that Walkabout introduces. However, once the trans-

fer is established, the pipelining of block requests makes it as

File size Direct Centr. Walk./256 Walk./4096

5MB 53.7s 107.1s 57.2s 60.2s

200MB 2142.2s 4283.0s 2157.3s 2148.1s

Table 1: Average delivery time between static devices.

File size Walkabout/256 Walkabout/4096

5MB 23.32KB (0.46%) 1.95KB (0.04%)

200MB 1018.39KB (0.50%) 59.45KB (0.03%)

Table 2: Average data overheads between static devices.

efficient as a streaming protocol.

Table 2 shows the average data overhead per transfer. This

measures the amount of application layer traffic that a Walk-

about transfer introduces in addition to the actual message

payload, including message headers, block requests, block

headers and inter-peer progress updates. For the 256KB piece

transfers, this amount is quite small, accounting for around

0.5% additional traffic. Increasing the piece size decreases the

overheads even further to around 0.04%, as there are less in-

dividual messages required to complete the transfer and piece

maps within inter-peer updates are smaller. It must be noted,

though, that because a piece is the atomic unit of transfer

between a consumer and a proxy, interruption to the client’s

connection will require any incomplete piece transfers to be

restarted from the beginning. While the larger piece size is ef-

fective for static devices, it could lead to a significant amount

of wasted transfer time if the client is moving rapidly. There-

fore the piece size, which can be set on a per-message basis,

should take these factors into account. We have shown here

that 256KB gives acceptably low overheads, so we will con-

tinue to use it in all subsequent experiments.

These results confirm that, as a baseline indicator of per-

formance, Walkabout is only marginally slower than a direct

transfer when both endpoints are fixed.

5.2 Upload to a Fixed Server

This experiment explores the scenario from section 2.1 of

a mobile device uploading to a fixed server. The mobile de-

vice follows a basic mobility pattern, where it connects to a

network for a time, disconnects, then reconnects to a different

network. The connection time for each run is fixed at a value

between 10 seconds and 30 minutes, and the disconnection

time is always 1 minute.

Figure 3 reveals that for a 200MB transfer, the direct and

centralised models are badly affected by the shorter connec-

tion times, but that Walkabout is unaffected. This is due to

the difference between the local network and Internet connec-

tion speeds. While connected, a Walkabout producer is able

to upload data to its proxy faster than the proxy at the con-

sumer’s end is able to retrieve it across Internet. This creates

a buffer of message pieces at the local proxy, which continues

to provide data for download after the producer disconnects.

The buffer is large enough that by the time the producer re-

connects, it still contains data, and thus the transfer is able

- 219 -

ICMU2006



Figure 3: Average delivery times for 200MB between a mo-

bile producer and a fixed consumer.

Direct Centralised Walkabout

Upload time 2142.2s 2142.2s 105.1s

Table 3: Average total connection time required for a mobile

producer to upload 200MB to the network.

to continue without interruption. The direct and Walkabout

transfer times converge when the connection time is approx-

imately 30 minutes, because the session time is long enough

for the entire transfer to take place without interruption under

both methods.

Even though the Walkabout and direct delivery times are

quite similar after about 10 minutes, table 3 reveals that the

Walkabout producer only needs around 5% of the time taken

under the centralised or direct models to offload its data–

which is the ratio between the local network and the Inter-

net connection speeds. This means that a user uploading data

from a Walkabout-enabled device is able to make much more

efficient use of even the shortest of connection times, when

compared to the alternative methods.

The data overheads are similar to those in experiment 1,

and so are not presented here.

5.3 Download From a Fixed Server

This experiment represents the scenario from section 2.2,

for a consumer device downloading a 200MB file from a fixed

server. When a connection is available, the download to the

consumer is simply a direct transfer for all methods, so there

is little of interest to observe. However, different consumer

disconnection times alter the amount of data that buffers at a

Walkabout proxy in their absence, which can lead to improved

transfer times if the consumer returns to the same proxy, but

also to increased data overheads if they do not. Therefore the

connection time in this experiment is fixed to 1 minute, while

the disconnection time is varied between 10 seconds and 30

minutes for each set of runs.

The end-to-end delivery times for direct and centralised

transfers would not be expected to change as a result of the

consumer’s movement patterns, but Walkabout is extremely

sensitive to them. At one extreme, a consumer may always re-

connect back to the same proxy, while at the other they might

never visit the same proxy twice. We present these two mo-

bility patterns in this experiment to explore the differences.

In reality, the results for a transfer would be expected to lie

somewhere between these two extremes.

5.3.1 Same Network

A consumer device could keep returning to the same proxy

over the duration of a transfer if it is within a building or

on a campus, but disconnect periodically due to fluctuating

network coverage or intentional shutdown. In this scenario,

the consumer-side proxy relays pieces to a connected con-

sumer as it receives them, or buffers them if the consumer

is absent. Upon reconnection, the consumer downloads the

buffered data at local speeds, which offsets some of the time

lost to disconnection. In fact, as figure 4 shows, when the

disconnection time is low enough, no overall transfer time is

lost. Even then, as the disconnection time rises, the main rea-

son for increased delay is the time lost to disconnection itself.

This claim is supported by figure 5, which shows that as dis-

connection time increases, the buffering at the proxy leads to

a relatively small amount of time spent downloading by the

consumer. The download time for the other methods are all

the same, as they depend on the speed of the data supply from

the Internet once the consumer reconnects.

Figure 4: Average delivery times for 200MB between a fixed

producer and a mobile consumer.

Figure 5: Average total connection time required for a mobile

consumer to download 200MB from the network.

5.3.2 Different Networks

If the consumer connects to a different proxy each time, fig-

ure 4 shows that Walkabout’s end-to-end delivery times are

comparable to those of the direct transfer. However, figure 6

- 220 -

ICMU2006



reveals that the data overheads increase proportionally with

the increase in disconnection time, reaching over 2000% when

devices disconnect for half an hour. By comparison, direct

transfers are considered to have zero (or a very small con-

stant) overhead and centralised delivery has a constant 100%

overhead, due to the message being delivered in its entirety to

both the server and the consumer. The Walkabout overheads

are the result of the proxies continuing to download message

pieces during the consumer’s absence. If the consumer never

returns to that proxy, the time spent downloading all these

pieces is essentially wasted. It should be noted that the over-

heads only start to plateau when the disconnection periods are

long enough that the proxy runs out of unique data to down-

load.

Figure 6: Average data overheads for 200MB between a fixed

producer and a mobile consumer.

These overheads are very large, but they could be reduced

by making some modifications to the Walkabout protocol.

The simplest method is for the proxy to only download a

message while a consumer is connected, but this eliminates

the potential for speed benefits if the consumer does return to

that proxy in the future. A better approach would be to selec-

tively choose which consumers to download for. By recording

how often it has seen a client, a proxy could decide whether

the client is likely to return, and therefore whether it should

continue to download pieces in their absence. The ideal ap-

proach, though, would be prefetching.

Prefetching has been shown to improve the performance

of publish/subscribe messaging when there are multiple event

broker servers, by migrating subscriptions for a disconnected

host to the server where it is expected to reconnect [2]. By

tracking the movement patterns of a client, the Walkabout

network could predict which proxy a disconnected client will

next connect to, and prompt it to begin downloading any mes-

sages that client is seeking. If the client does indeed connect

there, it can begin downloading immediately and will experi-

ence a faster transfer than in the non-predictive system. With

a good predictive model, this approach should yield near-

optimal transfer speeds.

6 RELATED WORK

Asynchronous messaging solutions remove the tight cou-

pling between communicating hosts, so that a producer may

send data to consumers indirectly. Their store-and-forward

nature allows a producer to place a message into the system

without needing to know the addresses or even the identities

of the consumers.

One form of asynchronous messaging has the producer stor-

ing its data at a rendezvous point for later retrieval by one or

more consumers. A common example of this is email, where

a message is addressed to an identity, delivered to a server,

and stored until the recipient chooses to download it. A simi-

lar concept can be seen with tuple spaces, as demonstrated by

Linda [6], where applications share data tuples by writing to

and reading from a persistent, globally shared memory.

The publish/subscribe (or pub/sub) message-oriented mid-

dleware paradigm presented by systems like Elvin [9] and

Siena [3] also removes the need for the producer to know the

addresses of a message’s recipients. Subscribers register their

interest in certain events (and their current location) via sub-

scription to an event broker, which may be a single server or a

network thereof. A publisher generates a message and deliv-

ers it to the event broker, which forwards it as a notification

to any subscriber with a matching subscription. The pub/sub

paradigm does not intrinsically support disconnected opera-

tion, so if a subscriber is not connected to the service when a

message is published, it does not receive it. However, there

are several systems that introduce proxies to collect notifica-

tions even if the subscriber is absent.

Message persistence in the Java Event-based Distributed

Infrastructure (JEDI) [5] is supported by proxy-like servers

that are responsible for storing messages during a mobile

client’s absence, then migrating them to the client’s new loca-

tion if they connect to a different server. Walkabout proxies

are similar, but do not require the client to explicitly say when

it is disconnecting, as they do in JEDI. Elvin proxies [11] do

not require explicit notification of disconnection, but they lack

support for message migration between proxies.

The Java Message Service (JMS) [10] is a messaging API

that supports both pub/sub and point-to-point message de-

livery models, with mechanisms that allow disconnected de-

vices to receive messages upon reconnection. In the point-to-

point model, consumers register with a central queue, a pro-

ducer sends a message to the same queue, and it is forwarded

to at most one of the waiting consumers. Pronto [13] and

iBus//mobile [8] are JMS implementations specifically tai-

lored to delivery to mobile devices across large networks (in-

cluding the Internet). They provide network gateways which

perform a variety of functions, most notably transcoding data

to suit a device’s limited capabilities, but do not place them

in the same local networks as the individual communicating

devices.

Data-caching infostations [7] support downloads in a simi-

lar manner to Walkabout. A mobile device requests a data ob-

ject and pieces are delivered pre-emptively across the Internet

to different infostations along its predicted path. The device

downloads these pieces over a local wireless link when it is

within range of an infostation. The infostations system does

not include specific upload or inter-device messaging support,

and so would not be able to support the ubiquitous applica-

tions presented in sections 2.1 and 2.3 without additional in-

- 221 -

ICMU2006



frastructure.

Walkabout’s proxy-to-proxy transfer protocol is based upon

BitTorrent [4], where nodes query a tracker to find the loca-

tion of peers for a given file, then request blocks from those

peers. BitTorrent files are published without knowing who the

consumers will be, and downloads are initiated by consumers

actively seeking content that interests them. By contrast, a

Walkabout producer specifies the consumers when it creates

a message, so transfers are only initiated by those proxies try-

ing to deliver the message to one of these consumers.

7 CONCLUSIONS AND FUTURE WORK

Current Internet data transfer solutions are not well suited

to mobile devices. This is because they either require both

sender and receiver to be connected simultaneously, or their

transfer speed is restricted to that of the Internet. As a result,

there are a number of data transfer applications that, while

technically possible, are currently impractical. Walkabout in-

troduces a proxy into the local network, so that mobile devices

can communicate their data at local network speeds, but let

fixed systems manage the transfer across the Internet. Proxies

use peer-to-peer overlays to carry out these transfers, in a way

that is tailored to the movement patterns of mobile devices.

We have shown through simulation that the Walkabout ap-

proach can significantly reduce the physical connection time

required for a mobile device to upload or download a mes-

sage. We have also shown that it can improve transfer speeds

across the Internet when network connectivity is limited and

either the message producer is mobile, or the message con-

sumer is mobile and returning repeatedly to the same net-

work. The amount of improvement is proportional to how

much faster the local network speed is than the available In-

ternet transfer speed. Our results prove that Walkabout would

be an effective support infrastructure for any data transfer ap-

plication involving a mobile device, including those presented

in section 2. We have recently completed a prototype Walk-

about system, and are currently in the process of developing

these applications to test their real world performance.

A tracker permits the monitoring of message delivery status

and overlay peers, but it does have time and data costs asso-

ciated with overlay maintenance. These costs are acceptable

for most transfers, but may be too expensive for smaller inter-

application messages. We have devised a simpler delivery

alternative that still provides applications with asynchronous

delivery and location-independent addressing, and expect to

include it in the main protocol in the future.

Finally, as suggested in section 5, prefetching could be a

viable technique to apply to Walkabout. Of all the future di-

rections, we believe that this holds the most promise for im-

proving its performance.

ACKNOWLEDGMENTS

The authors would like to thank the Smart Internet Tech-

nology CRC for the support they provided to this research.

REFERENCES

[1] M. Assad, J. Kay, and B. Kummerfeld. The Keep-in-

Touch system. In Proceedings of Ubicomp 2005 Work-
shop on Situating Ubiquitous Computing in Everyday
Life: Bridging the Social and Technical Divide, Tokyo,

Japan, September 2005.

[2] I. Burcea, H.-A. Jacobsen, E. de Lara, V. Muthusamy,

and M. Petrovic. Disconnected operation in pub-

lish/subscribe middleware. In Proceedings of the 2004
IEEE International Conference on Mobile Data Man-
agement (MDM’04), Berkeley, California, USA, Jan-

uary 2004.

[3] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. De-

sign of a scalable event notification service: Interface

and architecture. Technical Report CU-CS-863-98, De-

partment of Computer Science, University of Colorado,

August 1998.

[4] B. Cohen. Incentives build robustness in BitTorrent. In

Proceedings of the First Workshop on the Economics of
Peer-to-Peer Systems, Berkeley, CA, 2003.

[5] G. Cugola, E. Di Notto, and A. Fuggetta. The JEDI

event-based infrastructure and its application to the de-

velopment of the OPSS WFMS. IEEE Transactions on
Software Engineering, 27(9):827–850, September 2001.

[6] D. Gelernter. Generative communication in Linda. ACM
Computing Surveys, 7(1):80–112, January 1985.

[7] D. J. Goodman, J. Borràs, N. B. Mandayam, and R. D.

Yates. Infostations: A new system model for data and

messaging services. In Proceedings of 47th IEEE Vehic-
ular Technology Conference, May 1997.

[8] S. Maffeis. An introduction to wireless JMS. White

paper, http://www.softwired-inc.com, 2001.

[9] B. Segall and D. Arnold. Elvin has left the building:

A publish/subscribe notification service with quench-

ing. In Proceedings of AUUG97, Brisbane, Australia,

September 1997.

[10] Sun Microsystems. Java message service (JMS)

API specification. http://java.sun.com/
products/jms/.

[11] P. Sutton, R. Arkins, and B. Segall. Supporting discon-

nectedness - transparent information delivery for mobile

and invisible computing. In Proceedings of the 1st In-
ternational Symposium on Cluster Computing and the
Grid (CCGrid’01), Brisbane, Australia, May 2001.

[12] A. Varga. The OMNeT++ discrete event simulation sys-

tem. In Proceedings of the European Simulation Multi-
conference (ESM’2001), Prague, Czech Republic, June

2001.

[13] E. Yoneki and J. Bacon. Pronto: MobileGateway

with publish-subscribe paradigm over wireless network.

Technical Report UCAM-CL-TR-559, University of

Cambridge Computer Laboratory, February 2003.

[14] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph.

Tapestry: An infrastructure for fault-tolerant wide-area

location and routing. Technical Report UCB/CSD-01-

1141, EECS, UC Berkeley, April 2001.

- 222 -

ICMU2006


