
Mobile Object Location Discovery in Unpredictable Environments

Richard Glassey†, Graeme Stevenson‡and Robert I. Ferguson†

†Global and Pervasive Computing Group, University of Strathclyde, U.K.
‡Systems Research Group, UCD Dublin, I.E.

{rjg, if}@cis.strath.ac.uk
graeme.stevenson@ucd.ie

ABSTRACT

Emerging mobile and ubiquitous computing environments

present hard challenges to software engineering. The use of

mobile code has been suggested as a natural fit for simpli-

fying software development for these environments. Exist-

ing strategies for locating mobile code assume an underly-

ing fixed, stable network. An alternative approach is required

for mobile environments, where network size and reliability

cannot be guaranteed. This paper introduces AMOS, a mo-

bile code platform augmented with a structured overlay net-

work. We demonstrate how the location discovery strategy

of AMOS has better reliability and scalability properties than

existing approaches, with minimal communication overhead.

Finally, we show how AMOS can provide autonomous distri-

bution of effort fairly throughout a network using probabilis-

tic methods that requires no global knowledge of host capa-

bilities.

Keywords: Mobile Code, Structured Overlay Network,

Location Discovery

1 Introduction

The proliferation of mobile and ubiquitous devices intro-

duces hard challenges to the domain of distributed computing.

These challenges include managing disconnected operation,

where a device may have intermittent network connectivity,

making optimal use of a device’s limited resources, and host

failure where a device may simply run out of battery power

or crash unexpectedly. Developing software for these unpre-

dictable environments is therefore much harder than for tradi-

tional distributed systems.

The use of mobile code [1] has been suggested as a natural

fit for managing some of the challenges of developing soft-

ware for mobile and ubiquitous computing environments [2].

Host failure, through loss of power, can be mitigated by mi-

grating a process to another device to continue its operation.

Disconnected operation can be enabled by migrating a pro-

cess from a device with weak connectivity into a network of

stable hosts to complete its task before returning to the orig-

inal device. Intensive processes can be migrated from a re-

source constrained device to another device that has better

resources available. These compelling reasons suggest that

mobile code has something to offer in the domain of mobile

and ubiquitous computing.

However, as soon as mobile code is set free to roam around

a network, tracking its location becomes important for sup-

porting communication with other processes. To prevent mo-

bile code from becoming unreachable, location discovery strate-

gies (centralised registry, multicast and home server) have

been developed. Unfortunately, each of these strategies has

serious flaws that render them neither reliable nor scalable for

the unpredictability displayed in mobile and ubiquitous envi-

ronments.

This paper describes AMOS (Adaptive Mobile Object Sys-

tem), which provides better location discovery of mobile ob-

jects1, in terms of reliability and scalability, than existing strate-

gies, with minimal communication overhead. We introduce

the Host Routing strategy, which makes use of an overlay

network to discover the location of mobile objects. Over-

lay networks, such as CAN [3], Chord [4], Pastry [5] et al,

are distributed systems that do not rely on centralised con-

trol or hierarchical organisation [6]. They are typically self-

organising networks, layered upon an IP-based network, that

use a flat logical addressing scheme. Each host only needs

knowledge of O(log n) other hosts, yet can send a message to

an unknown host, through other hosts using key-based routing

- in both cases n is the number of hosts. This creates a global

yet distributed index of hosts which is scalable, efficient and

reliable.

In AMOS, each mobile object has a globally unique iden-

tifier (GUID) that is used to generate a unique network iden-

tifier (UNID) in the overlay network address space. When a

mobile object migrates, a registration process routes its new

location to the host in the overlay network which has the clos-

est UNID to its own generated UNID. This host assumes re-

sponsibility for storing the mobile object’s location whilst it

remains active. Should the host fail or leave the network, the

host with the next closest UNID assumes responsibility auto-

matically.

If a process needs to contact a mobile object, the discovery

process routes a location request message to the host with the

closest UNID to the mobile object’s UNID in order to deter-

mine the last known location. As this approach has no single

point of failure it improves reliability compared to the cen-

tralised registry and home server approaches; reduces com-

munication overhead compared to a milticast based solution

due to efficent routing; and achieves scalability by distribut-

ing the management effort throughout the system.

The remainder of the paper is structured as follows. Sec-

1Due to object-oriented nature of AMOS, we use mobile object instead of

mobile code, process or agent

- 19 -

ICMU2006

tion 2 outlines three existing strategies for discovering the lo-

cation of mobile code and identifies their shortcomings. Sec-

tion 3 describes the architecture of AMOS, an adaptive mo-

bile object system developed to improve the discovery of mo-

bile objects in mobile and ubiquitous environments. Section 4

presents the results of the evaluation of the registration pro-

cess and host routing strategy. A decentralised load balancing

technique that makes the best use of a heterogeneous host en-

vironment is also evaluated to illustrate the benefits of using

AMOS. Section 5 provides a brief survey of related work in-

vestigating the fusion of mobile code platforms and peer-to-

peer systems. Finally, in Sec. 6, we present our conclusions

of this work.

2 Location Discovery

Knowledge of where a mobile object is currently located

within a network is essential in order to communicate with

it. This section looks at three strategies - centralised registry,

multicast and home server - and discusses their respective ad-

vantages and disadvantages.

2.1 Centralised Registry

Perhaps the most basic way of providing location discovery

of mobile objects is to maintain a fixed host that is responsi-

ble for tracking their location throughout their life-cycle. This

centralised registry strategy is simple to implement, only re-

quiring the mobile objects to report their location to a well

known registry service and for other processes to be aware

of the service. Aglets [7] and Concordia [8] are two mobile

code platforms that make use of this strategy. Figure 1 shows

a general registry service, where dotted rectangles represent

host machines and grey circles represent mobile objects. De-

spite being efficient, this is not a robust solution, especially

when a system may consist entirely of mobile and unreliable

hosts. This strategy creates a single point of failure, and in-

troduces the potiential for performance bottlenecks should lo-

cation updates or requests be numerous.

register X

Registry
ObjID: Location
X 132.45.67.89
Y 132.34.76.81
Z 127.54.67.53

132.45.67.89

X

132.34.76.81

Y

127.54.67.53

Z

Y location?
132.34.76.81

invoke Y.foo()

Figure 1: Registration and look-up in a centralised location

discovery strategy

2.2 Multicast

A multicast strategy involves propagating a discovery re-

quest throughout a network of hosts with no reliance upon

a registry service. Emerald [9] is a mobile code framework

that uses the multicast strategy. Figure 2 shows a typical dis-

covery process where sender S propagates a location request

through the network in order to discover the location of target

T. Whilst multicast is more efficient than broadcast, it still is

costly in terms of communication because the sender floods

the network until the host containing the target is discovered.

For resource-constrained devices, network communication is

a costly activity and should to be minimised where possible.

S

132.45.67.89

T

T location? T location?

T location? T location?

T location? T location?

132.45.67.89

Figure 2: Location discovery using a multicast strategy

2.3 Home Server

The home server strategy distributes the registry of mo-

bile objects, thus improving reliability to a degree and reduc-

ing communication overhead. AgentSpace, the mobile code

framework that AMOS is built upon, makes use of the home

server discovery strategy [10]. It operates on the principle that

each host that launches a mobile object becomes responsible

for tracking its location throughout its life-cycle (illustrated

in Fig. 3).

Home Server

hostA hostB hostC

migrate

migrate

updateIPupdateIP updateIP

migrate

Figure 3: Registration of IP with home server

When a mobile object is launched, its globally unique iden-

tifier (GUID) includes the IP address of the home server. Ev-

ery time it migrates, the mobile object contacts its home server

and notifies it of its new location. If another process needs to

contact the mobile object, it must inspect its GUID and con-

tact the appropriate home server to get its current location”.

- 20 -

ICMU2006

Whilst this is an improvement over the previous two strate-

gies, it still is not robust. If its home server fails, a mobile

object cannot update its location, and no other process can

contact it. Furthermore, if one host launches many mobile

objects, it may become a performance bottleneck.

3 Architecture

The shortcomings of the location discovery strategies de-

scribed in Sec. 2 limit the use of mobile object based systems

for mobile and ubiquitous computing environments. We now

describe the architecture of AMOS, which solves the prob-

lem of providing a reliable and scalable location discovery

strategy for mobile objects in unpredictable environments -

reducing the difficulty of developing a distributed application.

We outline the high level architecture of AMOS; detail how

the reliable location registration and discovery of mobile ob-

jects is achieved using key-based routing; and illustrate how

AMOS can make the best use of resources in a network of

heterogeneous hosts by using probabilistic methods.

3.1 Architectural Overview

Most mobile code frameworks depend upon the notion of

a host running a container process that can launch, host and

receive mobile objects. The container provides the execution

environment in which mobile objects can carry out the tasks

they have been set to complete. It also acts as a sandbox that

can enforce access control policies that prevents a malicious

mobile object from damaging the host. Mobile objects are

free to migrate to any other host that is running the container

process.

In AMOS, a network of hosts, besides running containers,

attempts to form a structured overlay network, using the pro-

tocols developed by the Pastry project [5]. An overlay net-

work is simply an abstraction over physical networking that

permits hosts to address each other with logical addresses [6].

No host has a global view of the entire network, instead each

host becomes part of a distributed hash table. A sub-set of

host addresses from the global address space are also stored

to aid message routing. This set is generally of size O(log n)
where n is the number of hosts. Hosts therefore must com-

municate indirectly by using key-based routing unless they

already know the host address that they wish to contact. Mes-

sages are deterministically routed through the overlay net-

work address space using a greedy approach, whereby a host

forwards a message to a member of its routing set that has the

closest network identifier to the target network identifier. The

performance of key-based routing is O(log n) where n is the

number of hosts.

Figure 4 illustrates a high-level view of AMOS on a single

host, where a HostManager and its associated helper compo-

nents are running in a container with other mobile objects.

When a new HostManager component is created on a host,

it uses a well known IP address (or range of addresses) to

bootstrap itself into an existing overlay network using the

HostRouter and Node components. The bootstrap phase in-

Host Machine

Container

Overlay Network

IP Network

HostManager

L-RegistryR-Registry

HostRouter
MOs

Node

Figure 4: High-level architecture of AMOS on a single host

volves choosing a unique network identifier (UNID) and de-

termining the set of other Nodes that this HostManager is

aware of. The Node manages the HostManager’s position in

the overlay network by building and maintaining a routing ta-

ble and a leaf-set of other Nodes, its part of distributed global

index. The process of bootstrapping into overlay networks is

described in greater detail in [5]. The L-Registry (local reg-

istry) is a simple component that stores the mobile objects

currently on this host, notifying the HostRouter of all mobile

object arrival events. The R-Registry (remote registry) com-

ponent stores records of mobile objects identities and IP lo-

cations that this host is currently responsible for, forming part

of the distributed index of mobile objects. The next section

explores how these components interact to handle the regis-

tration and location discovery of mobile objects.

3.2 Location Discovery
To provide a better location discovery strategy than the

strategies discussed in Sec. 2, we must be able to minimise

the amount of communication required to locate a mobile ob-

ject irrespective of network size, and ensure fault tolerance

in the face of host failures, whether permanent or temporary.

To demonstrate how AMOS satisfies these requirements, this

section details the interaction between a mobile object (MO)

and the HostManager during the registration process, and de-

scribes the location discovery strategy that allows MOs to

communicate without prior knowlege of each others location

3.2.1 Mobile Object Registration

A well designed registration service should facilite an effi-

cient, reliable and timely lookup of a mobile object’s loca-

tion. The centralised registry and home server strategies both

have the problem that if a host fails, it becomes impossible

to reach the MO. Within AMOS, an MO arriving at a host

is detected by the HostManager, which starts a registration

process. Rather than register the MO on this host, or choose

a specific host address, AMOS registration takes the novel

- 21 -

ICMU2006

HostManager

L-Registry

HostRouter

Node

HostRouter

Node

arrivalEvent

addObjId

sendLocation
UpdateMsg

routeMsg receiveMsg

R-Registry

updateLocation

enrouteMsg

Mobile Object

overlay
network

Figure 5: Registration of a Mobile Object in AMOS

approach of using the GUID of the MO to generate a valid

UNID within the overlay network address space. It is not nec-

essary that a node with the generated address exists in the net-

work. AMOS handles such situations by choosing the choos-

ing the numerically closest UNID that does have a host - a

property provided by the overlay network. We therefore are

always guaranteed to get an active host to handle the registra-

tion request.

Figure 5 illustrates component interaction during the reg-

istration process. The arrival of an MO generates an arrival

event which the HostManager detects. The HostManager adds

the GUID of the MO to its local registry (L-Registry). Adding

the MO causes the local registry to notify any observers that

a new MO has arrived. The HostRouter component is one

such observer. Its purpose is to handle messages that are sent

and received using overlay network routing. Upon notifica-

tion of the arrival of a new MO, it creates a new location up-

date message containing the MO’s GUID and the host’s IP

address. This message is then dispatched to the Node compo-

nent which is the access point into the overlay network. The

Node forwards the message onwards (to the next Node within

its routing table possessing the numerically closest UNID)

based on the UNID generated from the MO’s GUID. Once

the message arrives at its destination it is registered in the re-

mote registry (R-Registry) of the HostManager component.

This completes the registration process.

This process re-occurs every time an MO migrates from

one host to another. The chief benefit of this indirect form

of registration is that should the host which has the UNID

closest to the MO’s generated UNID fail, the next active host

with the closest UNID will assume responsibility for regis-

tering the location of the MO. This process is transparent to

the MO and the HostManager attempting to register it with

another host because the overlay network takes care of the

UNID resolution.

The only situation of concern is when the host managing an

MO’s location information fails and the MO does not migrate

for a length of time, or ever again. Any process attempting

HostRouter

Node

HostRouter

Node

route
Msg

receive
Msg

R-Registry

getLocation

enrouteMsg

getObject
Location

sendLocation
RequestMsg

setObject
Location

receive
Msg

handleLocation
InfoMsg

routeDirect

setLocation

sendLocation
InfoMsg

Mobile Object

overlay
network

HostManager

Figure 6: Host Routing strategy for discovering location of a

mobile object

to contact the MO would be unable to find the host respon-

sible for storing the MO’s location. Each node in the net-

work maintains a set of other node UNIDs to facilitate rout-

ing and maintain the integrity of the network. Periodically,

this set is monitored check for node failures. AMOS lever-

ages this process by ensuring that each node replicates the re-

mote registries of the other nodes in their set. If a host failure

is detected, the discoverer can invoke the registration process

described above for all MOs in the registry belonging to the

failed host to repair the registry. This approach increases the

reliability of registering MOs and occurs transparently. By

taking advantage of the self-organising structure of the over-

lay network, we can avoid using less efficient strategies, such

as forcing MOs to re-register after a time-out of not migrat-

ing, or requiriing HostManagers to monitor MO’s that have

not recently moved.

3.2.2 Discovery of Location

With the exception of multicast, other location discovery strate-

gies involve contacting specific hosts known to manage the

location information of MOs. As noted earlier, multicast is

an expensive discovery method in terms of network commu-

nication overhead. The discovery strategy used in AMOS,

Host Routing, uses the distributed index of MOs that is cre-

ated by the registration process to achieve reliable look-up,

whilst significantly limiting network overhead. The caveat

of Host Routing is that the requester must already possess

the GUID of the target MO. As long as the requester has the

GUID of the target, then AMOS guarantees the discovery of

the location information.

To begin with, the requester contacts its local HostMan-

ager and issues a request for the location of a target MO. The

HostManager delegates the task to the HostRouter. It gen-

erates a location request message and passes it to the node,

which routes it towards the UNID generated from the target

MO’s GUID. This message is forwarded through the overlay

- 22 -

ICMU2006

network until it reaches its destination, the node of the host

responsible for the location of the target MO. Upon receiv-

ing this message, the HostRouter on the remote host performs

a look-up within its remote registry using the target MO’s

GUID as a key, which returns its last known IP location. The

HostRouter then routes this information directly back to the

host machine that issued the request. Once the originating

HostManager receives the message, it calls back the requester

and informs it of the IP location for the target MO. This pro-

cess is illustrated in Fig. 6, where solid black arrows indicate

the first phase of sending the location request message and the

dotted arrows indicate the location info message generated in

response.

The requester can now reliably communicate with the tar-

get MO to achieve its goal. The registration process described

in the previous section ensures that the location of the target

MO will be correct. As the actual paths that messages are

routed across to reach their destination are not fixed, the over-

lay network can sustain damage whilst maintaining the abil-

ity to route messages correctly - a property inherited from the

overlay network

From the developer’s perspective, the process of locating a

mobile object using the Host Routing strategy occurs trans-

parently. As with other strategies described in Sec. 2, devel-

opers obtain a reference to a MO by calling a method that

takes an object ID as a parameter. Thus, the use of the Host

Routing strategy has no impact on the complexity of applica-

tion development.

3.3 Distribution of Effort

Balancing of effort, or load, is particularly important for

mobile and ubiquitous computing environments where reli-

able and capable hosts may be in short supply. Although it

can be beneficial to migrate processes, it is important to con-

sider where to send them, and the implications of doing so. It

is preferable if the system collectively approaches a balanced

state with no global knowledge required, rather than maintain

a list of reliable resources in a network.

To achieve autonomous load balancing in AMOS, we mod-

ify the architecture in two ways: by allowing hosts to occupy

variable amounts of address space; and by modifying MOs to

prefer more capable hosts.

A single host can occupy more address space by spawn-

ing multiple nodes - in effect, making itself more ‘visible’

in the overlay network. Figure 7 demonstrates how this is

achieved by introducing a new component, the VirtualNode-

Handler. The VirtualNodeHandler acts as a multiplexer, ran-

domly choosing a single node to forward an outgoing mes-

sage, whilst passing all messages from all nodes back to the

HostRouter. This increases the probability that an MO will

arrive when migrating from one host to a randomly selected

host. Furthermore, this host will handle a greater percentage

of registration requests because there is a higher probability

that more network traffic will be handled by the host’s collec-

tion of nodes.

Although this process allows more capable hosts to han-

HostRouter

VNodeHandler

Node Node Node NodeNode

Overlay Network

Figure 7: Multiple nodes per single host

dle more work, it does not prevent MOs from migrating to a

resource constrained host. To to mitigate this, MOs are mod-

ified to prefer more capable hosts. They achieve this through

host introspection . Apart from requesting the location of an-

other MO, they can also query how ‘busy’ the host currently

is through the HostManager. At present, a HostManager de-

fines its host load by dividing a host capability metric by the

number of MOs currently active on this host. Host capability

can be customised (e.g. using a device profiling standard such

as CC/PP [11]), but for the sake of simplicity, we define it as

a numerical value reflecting the class of device the host is. A

resource-constrained device would have a low number, whilst

a fixed server would have a high number.

On arrival at a new host, an MO uses host introspection to

determine if this is a good host on which to carry out its activi-

ties. If it is not, it migrates to a random host. The MO chooses

a random host by generating a random UNID, requesting the

IP of the host that has the closest UNID (similar to selecting

an active host to register with), and migrates there instead.

When this random migration is combined with more capable

hosts representing a larger proportion of the address space of

an overlay network, effort will be distributed fairly without

needing any centralised co-ordination. Whilst simple, relying

purely on probability that an MO will get to a capable host,

this enables an autonomous load balancing scheme in AMOS

that fairly distributes the effort according to host capability.

4 Evaluation

This section details the evaluation of AMOS. We demon-

strate that the cost incurred using the registration process does

not significantly vary as the network size increases; the cost

of the using the Host Routing strategy is competitive with

the home server strategy whilst significantly improving re-

liability; and finally that autonomous load balancing can be

achieved using decentralised control and probabilistic meth-

ods

The following experiments were conducted using a net-

work of twenty Sun Blade workstations, running Solaris 2.5.1,

connected via 100-BaseT ethernet. This setup was chosen for

two practical reasons: it is costly to assemble a large enough

- 23 -

ICMU2006

5 10 20 40 80

0
10

20
30

40
50

60

Number of Nodes

R
eg

is
tr

at
io

n
T

im
e

(m
s)

Figure 8: Cost incurred, in time (ms), for registering a mobile

object in network of increasing size

collection of mobile devices to achieve significant results (al-

though this would give a better idea of unpredictability); the

focus of the experiments is to demonstrate that the benefits

provided by AMOS come without a significant cost compared

to other methods independent of execution environment.

4.1 Evaluation Methodology & Results

4.1.1 Registration costs over increasing network size

The first experiment measures how much cost, in terms of

time, is incurred when using the mobile object registration

process, detailed in Sec 3.2.1, on networks of different sizes.

The source code of the HostManager was altered to out-

put a time-stamp for the beginning and end of the registration

process for a mobile object. Because the registration process

occurs on separate machines, a Network Time Protocol server

is used to synchronise all hosts, avoiding significant clock dis-

crepancies.

A network of n nodes is created across the hosts. For each

size of network, a single mobile object is launched onto one

host. This invokes the registration process. Once complete,

the time-stamps can be subtracted to give the total time it took

to register the mobile object. This is repeated 10K times for

each size of network. The results are shown in Fig 8.

As the network increases in size, the average cost to register

a mobile object remains mostly within the range of 25–40ms.

The median value is shown as a thick horizontal line. The

box represents the range of registration costs falling within

the 25th and 75th percentiles, and the whiskers represent the

5th and 95th percentiles. The narrow ranges suggest that for

each network size, registration cost remains consistent.

RMI HomeServer HostRouting

0
20

40
60

80
10

0
12

0

Discovery method

T
im

e
(m

s)

Figure 9: Completion times for RMI look-up, Home Server

and Host Routing strategies

4.1.2 Location discovery of a mobile object

The second experiment measures the cost, in time, of discov-

ering the location of a mobile object using the Host Routing

strategy compared to the home server strategy. We measure

the total time it takes to discover the location and invoke a

method upon the remote mobile object.

Two mobile objects, Caller and Receiver are launched into

the network of hosts. The Receiver migrates to a randomly

selected location in the network and waits. The Caller then

attempts to discover where the Receiver is, using each of the

discovery strategies. Firstly, as a benchmark for comparison,

the Caller uses Java RMI with the known IP location of the

Receiver to invoke a method. This measurement indicates the

network cost without any discovery process. Secondly, the

Caller uses the Home Server discovery strategy provided by

AgentSpace to invoke a method on the Receiver. Finally the

Caller uses the Host Routing strategy to discover the location

of the Receiver. Each attempt to discover and invoke a method

is repeated for 10K iterations, mitigating the effects of any

host or network anomalies. Figure 9 shows a series of box-

plots that summarise the completion time for each method.

The Host Routing strategy is more costly than the home

server method with mean completion times of 91.5ms and

67.4ms respectively, and displayed a wider distribution of re-

sults. We believe that ≈ 25ms is a reasonable extra cost when

the reliability and self-healing properties of Host Routing is

taken into consideration. AMOS automatically repairs the

registry when a host fails so there are no extra costs incurred,

justifying the slight increase in discovery time.

4.1.3 Autonomous Load Balancing

Because mobile and ubiquitous computing environments will

most likely consist of a collection of devices that have differ-

- 24 -

ICMU2006

Decision A (1n) B (2n) C (4n) D (6n) E (8n)
0 500 0 0 0 0

1 11 48 100 160 181

2 8 48 99 155 190

3 8 50 94 152 196

Optimal 24 47 95 144 190

Table 1: Distribution of mobile object population after three

decisions

ent capabilities, it makes sense to make optimal use of the

resources available. However, without prior knowledge of

the devices that are more capable, optimality is difficult to

achieve. This experiment illustrates how using AMOS en-

sures that a population of mobile objects will attempt to make

best use of the available resources, whilst avoiding resource-

constrained devices.

We use the host capability measure outlined in Sec 3.3 to

vary the number of nodes that a HostManger deploys. For the

purpose of this experiment, we simulate a range of devices

with various capabilities. Type A is a resource constrained

device and will only deploy one node, whereas type E is a

more capabale device that will deploy eight nodes. We build

a network using five of each device type.

To create a ‘worst case’ load scenario, we populate one type

A device with five hundred mobile objects. Each mobile ob-

ject waits a random amount of time, uses host introspection

and makes a decision whether to stay or migrate to a random

location. Table 1 illustrates how the population of mobile ob-

jects distributed themselves after three decisions. It is clear

that just after one round of decisions the distribution is already

approaching optimal in the sense that higher capability hosts

are handling more mobile objects. The optimal proportion of

hosted mobile objects for each device type is calculated by

P = M(D×F
N), where M is the total number of mobile ob-

jects, D is the number of devices of this type, F is the number

of nodes deployed, and N is the total number of nodes.

However, it is not clear if significant oscillation is occuring

where a mobile object may be constently switching between

devices. Subsequent runs created similar distributions of mo-

bile objects across the devices. The shape of this distribution

is easily controlled by the choice of how devices are classi-

fied. Whilst this example is artificial, it illustrates how the

design of AMOS can be easily extended to achieve decen-

tralised control, in this case balancing the load proportionally

throughout the network of hosts.

5 Related Work

This section gives a brief overview of existing mobile code

frameworks and peer-to-peer (P2P) systems. We also discuss

an earlier project with the goal of combining these technolo-

gies to provide reliable agent communication, and compare

its performance to that of AMOS.

5.1 Mobile Objects and Agents
The majority of existing mobile object and agent platforms

make use of the object location strategies described in Sec-

tion 2. Aglets [7] and Concordia [8] implement a centralised

registry, whilst AgentSpace [10] and Adjanta [12] use home

server based techniques. Emerald [9] uses a multicast strategy

as backup to its primary technique, which involves a mobile

object leaving a forwarding pointer on migration.

Although applicable in many domains, such as parallel pro-

cessing and distributed search, there are none where mobile

agents are unique in providing a solution. Other technolo-

gies can usually be used in combination that yield equal or

better performance results. However, mobile agents provide

a generic framework with which to easily implement a wide

range of distributed applications. The technology excels in

dealing with dynamic or volatile network environments, with-

out requiring the developer to a master a number of applica-

tion specific techniques.

5.2 P2P Overlay Networks
Overlays that provide an address space over a subset of a

network are a useful tool for managing a population of hosts

in a distributed system. Such isolation allows service partici-

pants to see only each other, and allows properties of the over-

lay to be fine tuned to meet overlay specific needs (e.g., re-

silience or locality). This project is interested in P2P overlays,

for their capability to provide object location, messaging, and

node organisation in ad-hoc networks. Such overlays also

provide population management features (self-organisation and

self-repair) that are essential for the management of ad-hoc

networks.

AMOS is built on top of Pastry [5]. Pastry supports ap-

plication level message routing and object location in a large

overlay network of nodes. When given a message and a node

ID (key), Pastry efficiently routes the message to the node

with the ID that is numerically closest to the key among all

live pastry nodes. The expected number of routing steps is

O(log n) where n is the number of nodes in the network.

Other P2P overlays such as CAN [3] and Chord [4] pro-

vide hash table like functionality. Chord maps keys to nodes

and provides an O(log n) routing-hop lookup algorithm that

can be used to find the IP address of the node responsible for

any given key. CAN maps a virtual d-dimensional Cartesian

coordinate space across all participant nodes, with each node

responsible for all points within a given zone. The number of

routing-hops in the CAN lookup algorithm grows faster than

O(log n).

5.3 Hybrid Approaches
Although mobile objects and agents have long been touted

as a promising technology for use in ad-hoc networks, exist-

ing object location algorithms have lacked the robustness and

efficacy required for such environments. In this section we

compare AMOS to another system which has tried to address

this problem through the use of a P2P overlay, Armada [13].

- 25 -

ICMU2006

Armada is an agent communication system built on top of

Tornado [14]. In Armada, a community of agents running

on a set of hosts autonomously manage their communication.

Each agent has a GUID, and keeps a list of other agents that

it knows how to send messages to. If an agent wishes to

send a message to a node that it does not know how to con-

tact directly, it looks up the agent whose key is numerically

closest to, but lower than the key of the destination home.

This receiving node then repeats this process until the mes-

sage reaches its destination. Multiple communities of agents

may run on the same set of nodes, but use only agents in the

same community to aid routing.

On joining a community, an agent constructs a set of point-

ers to nodes in the community. Agents periodically perform

a secondary algorithm to ensure that they maintain pointers

to the closest neighbouring set. On migration, a mobile agent

updates its location in the community by finding the agent

platform numerically closest to its own. An agent on that

node receives the updated location of the agent and joins a

community of agents responsible for storing the location of

mobile agents in the community.

From the results in [13], Armada appears to perform best

when the size of a community of agents is small. The num-

ber of messages required for an agent to join a community

is O(log a), where a is the size of the agent community. This

can be compared to O(log n) messages for an AMOS agent to

register, where n is the number of nodes in the network. Ar-

mada incurs a cost of O(log a) + O(log a)2 messages every

time an agent migrates to update its community. In AMOS,

agent migration requires O(log n) messages to be sent. Fi-

nally, sending a message to an Armada agent requires 2 ×
O(log a) messages to be sent, whilst in AMOS this figure is

O(log n).
We conclude that for registration and messaging, the rela-

tive performance of each system is highly dependent on the

ratio of agents to nodes in the network. However, the poor

performance of the update operation in Armada, and the re-

curring need for each agent to recalculate its closest neigh-

bouring set restricts its applicability to large agent communi-

ties and highly dynamic networks. As the size of the agent

population has no bearing on AMOS’ performance, it is more

suited to such environments.

6 Conclusion

The task of developing software for mobile and ubiquitous

computing environments is challenging, but the use of mobile

code provides one route to easing the difficulty. However, the

task of discovering mobile code location becomes a problem

in unpredictable environments when using existing strategies,

designed with fixed and relatively stable networks in mind.

This paper has introduced AMOS, a mobile code framework

that was augmented with a structured overlay network. This

fusion provides an elegant solution to the location discovery

problem in the form of the Host Routing strategy. It removes

the single point of failure issue of centralised registry and

home server strategies. The complexity of discovery with host

routing is O(log n) , and incurs a minimal cost of ≈ 25ms

more than the home server strategy Finally, an autonomous

load balancing scheme was presented that demonstrated how

a population of mobile objects can distribute themselves fairly

across a network of mixed capability devices without global

knowledge.

REFERENCES

[1] A. Fuggetta, G. P. Picco, and G. Vigna. Understanding

code mobility. IEEE Transactions on Software Engi-
neering, 24 (5):342–361, 1998.

[2] A. Zaslavsky. Mobile agents: Can they assist with con-

text awareness? In Proceedings of the IEEE Int. Conf.
on Mobile Data Management (MDM’04), 2004.

[3] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and

Scott Schenker. A scalable content-addressable net-

work. In Proceedings of the 2001 Conf. on Applications,
Technologies, Architectures, and Protocols for Com-
puter Communications, pages 161–172. ACM Press,

2001.

[4] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and Hari

Balakrishnan. Chord: A Scalable Peer-To-Peer Lookup

Service for Internet Applications. In Proceedings of the
2001 ACM SIGCOMM Conf., pages 149–160, 2001.

[5] A. Rowstron and P. Druschel. Pastry: Scalable, Decen-

tralized Object Location, and Routing for Large-Scale

Peer-to-Peer Systems. Lecture Notes in Computer Sci-
ence, 2218:329–350, 2001.

[6] E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim.

A survey and comparison of peer-to-peer overlay net-

work schemes. IEEE Communications Survey and Tu-
torial, 7 (2), 2005.

[7] B. Venners. The architecture of aglets, April 1997.

[8] T. Walsh, J. DiCelie, M. Young, D. Wong, N. Paciorek,

and B. Peet. Concordia: An infrastructure for collab-

orating mobile agents. In Proceedings of the 1st Int.
Workshop on Mobile Agents (MA ’97), 1997.

[9] E. Jul, H. Levy, N. Hutchinson, and A. Black. Fine-

grained mobility in the Emerald system. ACM Transac-
tions on Computer Systems, 6(1):109–133, 1988.

[10] Agentspace. http://www.agentspace.co.uk.

[11] CC/PP: http://www.w3.org/mobile/ccpp.

[12] A. Tripathi, N. Karnik, T. Ahmed, R. Singh, A. Prakash,

V. Kakani, M. Vora, and M. Pathak. Design of the ajanta

system for mobile agent programming. Journal of Sys-
tems and Software, 62(2):123–140, 2002.

[13] H-C. Hsiao, P-S. Huang, A. Banerjee, and C-T. King.

Taking advantage of the overlay geometrical structures

for mobile agent communications. In IPDPS, 2004.

[14] H-C. Hsiao and C-T. King. Tornado: a capability-aware

peer-to-peer storage overlay. Journal of Parallel and
Distributed Computing, 64(6):747–758, 2004.

- 26 -

ICMU2006

