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ABSTRACT

In this paper we present a strategy and a set of algorithms

for developing qualitative positioning services that provide

a qualitative location optimised for the environment where

they are to be deployed. We argue that for many context-

aware applications this may be more appropriate than more

common quantitative location systems, where the positioning

API may make unrealistic demands on the underlying mea-

surement service, and unrealistic promises to the application.

We show how a symbolic location system can be learnt from

training data in an unsupervised manner. We present exper-

imental results using 802.11 and GSM signal strength levels

and wireless beacon data.

Keywords: Location fingerprinting, machine learning.

1 INTRODUCTION

In 2000 Bahl et al. [3] first demonstrated that it was possi-

ble to determine the position of an object by comparing cur-

rent signal strength levels with those stored in a radio map

of the application environment. This technique known by

the term ‘location fingerprinting’ appealed to the ubiquitous

and pervasive research communities largely because it built

on existing infrastructures such as 802.11 Wireless Networks

(WiFi). Recent work however, has started to focus on the use

of GSM instead of WiFi as the underlying measurement ser-

vice [14], [13]. This change of focus has occurred principally

because GSM as a technology is more ubiquitous than 802.11

both in terms of coverage and user accessibility; everyone has

a cell phone.

In this paper we report on an investigation into the use of

ubiquitous signals present in our everyday lives as a method

of inferring location. In particular we focus on positioning

mobile devices in scenarios typically considered as ‘harsh’

such as open, outdoor environments where measurement vari-

ation is typically minimal. From a location fingerprinting per-

spective, the perfect environment is one where the positional

dependent measurement will vary widely at different loca-

tions but be constant at the same physical location. Hence

areas where there is typically only a minimal fluctuation in

measurements such as open outdoor environments offer rela-

tively poor positional granularity.

Given positional dependent data such as GSM and 802.11

signal strength, location fingerprinting can be used to recog-

nise areas. There are two ways to look at this: quantitatively
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and qualitatively. A quantitative positioning system typically

takes a geometric view of space using Euclidean or spherical

coordinate systems. In a qualitative (or symbolic) location

system space is managed as zones which are of interest to hu-

man beings. In terms of location fingerprinting, quantitative

models require the radio map to be mapped to continuous co-

ordinates, for example X, Y and Z. This requires samples to

be collected next to a ground truth. This enables statistical

models to be constructed and if required propagation models

to be applied to enable finer positional granularity [4]. Quali-

tative models differ from this approach in that samples do not

need to be collected next to a ground truth. Similarity metrics

between adjacent readings can be used to create zones that are

separable. We assess the use of GSM and 802.11 signals to-

gether with wireless beacon information as a means to infer a

qualitative location. In this process we have obtained 85,000

data-points. Each data-point consists of a ground truth GPS

location (only for testing), seven cell strength readings and

where available, 802.11 signal strength readings. The area

covers an urban space of 1.5 by 1.5 km, and was collected

over an 8-week period.

The rest of this paper is structured as follows. Section 2

provides a review of related work. Section 3 discusses a qual-

itative method of managing space and demonstrates the suit-

ability of this approach when the underlying measurement

service is GSM or 802.11 signal strength data. Section 4

presents an extensible Bayesian network for fusing cellular

and 802.11 signal strength data with wireless beacon infor-

mation. Section 5 discusses how to assess the performance of

the radio map. Section 6 reports on a prototype implementa-

tion using data gathered from a metropolitan environment.

2 BACKGROUND

Location fingerprinting is a positioning technique that has

increased in popularity over the last few years. This is largely

because it does not require change to the existing network

infrastructure, hence cost is low. Other favourable traits in-

clude: user privacy, it operates in environments where the

Global Positioning System (GPS) would fail (indoors and in

dense urban environments) and the number of wireless bea-

cons available in our cities and towns has increased dramati-

cally over the last few years. For example, in 2005 during a

war driving survey it was shown that downtown Seattle has a

WiFi access point density of 1200 per sq km [6]. The RADAR

system [3] was the first to apply this location technique and

achieved a median positional accuracy of 2.94 metres using a

network of 802.11 (WiFi) wireless access points. Since then

there has been much work trying to improve on these initial

results by building statistical models, applying complex RF
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signal propagation models and other tracking/filtering tech-

niques [7], [9], [10].

Recently, Otsason et al. [14] demonstrated that in an in-

door environment, using a wide GSM signal strength finger-

print, it is possible to achieve a median positional accuracy of

5-metres. The wide fingerprint contained the signal strength

levels for the 6 strongest cells and up to 29 additional GSM

channels. This information was obtained using a GSM mo-

dem that exported a richer API than most typical GSM cell

phones. Laitinen et al. [11] applied location fingerprinting

with GSM networks in an outdoor environment, achieving a

positional accuracy of 44-metres. The difference in these re-

sults is largely due to the minimal variation in signal strength

levels in open environments.

Typically, location fingerprinting systems have always re-

quired an exhaustive calibration phase where a radio map of

the spatial environment is constructed. Generally, once con-

structed, the radio map is treated as a static entity and new

or previously undetected radio beacons are not added once

calibration is complete. This poses performance problems

when running systems over extensive time periods. To ad-

dress this limitation, Letchner et al. [13] developed a hierar-

chical Bayesian framework that enabled new 802.11 access

points to be seamlessly integrated into a model of the spatial

environment. This approach, designed with large scale WiFi-

based coverage and long-term deployment in mind is possi-

ble because the radio map is periodically refreshed. Bayesian

networks are particularly useful when aiming to provide long-

term and large-scale deployment because they take a proba-

bilistic approach to sensor fusion. Therefore they can han-

dle situations where only incomplete data is available such

as missing beacon or signal strength information [2]. Cheng

et al. [5] have minimised calibration effort by applying posi-

tioning algorithms such as a centroid and a particle filter on

minimal as opposed to exhaustive data sets. This reduced the

time it took to map an entire city neighbourhood to less than

half an hour. LaMarca et al. [12] calibrated radio maps us-

ing data gathered from application users. This approach had

the advantage that the radio map reflected real usage hence

popular areas of the application environment were calibrated

exhaustively.

These quantitative approaches provide a position and an as-

sociated accuracy error that reflects the limits of the underly-

ing measurements. Our work differs from this in that we look

to contain the error within the positioning system and return

a qualitative location that reflects the best achievable perfor-

mance given the available measurements and constraints of

the spatial environment.

3 QUALITATIVE SPACE

Models of space can typically be classified as either topo-

logical (qualitative) or more commonly, as coordinate based

(quantitative). Quantitative models generally take a geomet-

ric view of space with positional information supplied by lo-

cation services using Euclidean or spherical coordinate sys-

tems. Coordinate tuples are processed by the application and

behaviour is updated to reflect the new location information.

In contrast, topological or symbolic models manage space in

a qualitative manner with positional information mapped to

human abstractions of physical places usually in the form of

spatial zones. The relationships between zones form a topol-

ogy often expressed as a graph. Application behaviour varies

depending upon the symbolic representation of space (zone)

that the user is currently located in. When constructing a sym-

bolic model of the spatial environment developers must define

spatial zones within the constraints of the underlying sources

of positional information. For example, it is not possible to

create zones with a physical coverage area that is finer than

the granularity of the data produced by the positioning ser-

vices.

In this section we demonstrate how a qualitative approach

to managing space is particularly suitable when the underly-

ing measurement service is GSM or 802.11 signal strength

data. This qualitative approach differs from more common

quantitative location systems, where the positioning API may,

given the available measurements, make unrealistic demands

on the measurement device, and unrealistic promises to the

application programs.

3.1 Logical Management of Space

A spatial environment can be managed in a qualitative man-

ner by introducing the notion of a spatial zone. We use the

term ‘spatial zone’ to describe a portion of space that, when

using a measurement of, for example, signal strength of a

wireless beacon, can be distinguished from other areas of

space. The area of physical space that a zone symbolises,

reflects both the quality of the positional measurements and

the spatial environment. Thus zones represent the finest, reli-
able position that the measurement service can offer, i.e. if it

is possible to reliably determine position within different ar-

eas of a zone then the zone should be split into smaller, child

zones. Consequently zones do not necessarily cover the same

amount of physical space and hence are assumed to be of un-

equal size.

Our positioning service returns the zone the user is cur-

rently located in as their qualitative location. The way that

zone membership is determined depends on the type of posi-

tional measurements available. For example, Figure 1a shows

the layout of an office environment with zones superimposed

on it. It also shows the physical path that a user took when

walking through this area. In terms of qualitative location,

this path simply represents a series of zone transitions in the

form of a directed graph as shown in Figure 1b. We use the

term ‘logical path’ to describe the series of zone transitions

equivalent to the physical path.

By constructing logical paths based on users’ interactions

with the application environment it is possible to infer the re-

lationships between zones. This has the advantage that once

sufficient data has been collected it is possible to identify

popular paths and invalid zone transitions in an unsupervised

manner, making it easier to roll out the system and, over time,

improve positioning service performance.
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(a) (b)

Figure 1: (a) A typical office floor plan - the spatial environment for a context-aware application. The environment has been

partitioned into zones that reflect the performance of the underlying positioning services. (b) The physical path illustrated in (a)

can be represented as a directed graph. The nodes in this graph correspond to qualitative locations and the arcs indicate order.

3.2 Automatic Zone Creation

We can construct a zone-based representation of a spatial

environment in an unsupervised manner. This is a simple of-

fline calibration process. Firstly, the deployer collects sam-

ples of positional measurements throughout the application

environment. Unlike traditional location fingerprinting cali-

bration, the associated physical positions do not need to be

stored with these measurements. Once this training data has

been collected it is partitioned into sets of similar measure-

ments. These sets contain the data that will be used to deter-

mine zone membership, hence a set, or cluster of training data

defines the boundaries of a spatial zone.

In a previous paper [1] we demonstrated how the partition-

ing of data can be carried out in an unsupervised manner by

applying K-means using:

J =
K

∑
j=1

n

∑
n∈S j

|xn −μ j|2 (1)

where xn is a vector representing a positional measurement

and μ j is the centroid of the data points in S j and |xn − μ j|2
represents the distance between the sample and the cluster

centre is used to partition the training data. If, for example,

the positional measurements were signal strength levels on a

cellular network then xn would represent a snapshot of these

levels for all visible cells. K-means can be initialized with

vectors selected at random from the training data. The Eu-

clidean distance for each subsequent sample xn to the centre

of each centroid μ j is then calculated. This sample xn is then

added to the centroid that it is closest to. The centroids are

then recalculated and the membership of each of the points

S j for each centroid μ j is then re-evaluated until there are no

further changes in membership. At runtime the qualitative lo-

cation of a user is determined by finding the cluster most sim-

ilar to a position dependent measurement taken at the users

current, physical location.

This qualitative representation of a spatial environment can-

not be created by a simple process of converting an existing

quantitative model. That is, mapping a set of Cartesian coor-

dinates to a series of spatial zones. This is because a linear

mapping will not be reflective of the limitations of the envi-

ronment and the positional dependent measurements.

4 FUSING POSITIONAL DATA

In our daily lives we are increasingly surrounded by a wealth

of information that can be used to infer location. We can use

the sighting of a particular wireless beacon or combination of

wireless beacons to infer information about our current loca-

tion. For example, if the MAC address of the WiFi access

point in your office appears in an 802.11 scan then you can

infer that you are near your office. By using a combination

of currently visible wireless beacons it is possible to divide

space in a logical manner, thus increasing positional granu-

larity over that of a single beacon. This process of inference

can also be applied to cellular networks. Seeing a particu-

lar cell enables a coarse geographic location to be inferred.

In terms of granularity the sighting of an 802.11 access point

enables a finer positional estimate than that of a cellular base

station. However in terms of coverage and user accessibility

the cell phone is far more ubiquitous than 802.11; everyone

has a cell phone.

Aside from beacon information we are also able to use

the signal strength levels of wireless beacons to infer loca-

tion. This technique known by the term location fingerprint-

ing is possible because, at the same physical location the sig-

nal strength levels from a wireless beacon will typically be

constant. Therefore matching current signal strength levels

with those stored in a radio map enables the distinction be-

tween different physical places to be made. This type of in-

formation enables the spatial environment to be divided into

more zones than using wireless beacon information alone.

We have discussed three sources of information abundant

in our daily lives that can be used to infer location. Each

source has strengths and weaknesses. Wireless signal strength

levels are susceptible to multi-path fades, diffraction and re-

flection and hence are typically very noisy. Cell phones typ-

ically only track up to seven cells at any single time. How-

ever in dense urban environments there will potentially be far
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Figure 2: A Bayesian network for fusing cellular, WiFi and

beacon positional information.

more than seven cells visible from a single location. Hence

the same wireless beacons may not always be observable at

the same physical location. However by fusing these sources

an increase can be made both in terms of positioning relia-

bility and granularity. In the following section we present a

Bayesian network for location inference using this data.

4.1 Bayesian Network

Bayesian networks are directed acyclic graphs, where nodes

represent random variables and edges or arcs represent the

causal relationships between nodes. Each node consists of

a set of mutually exclusive states. At each node a proba-

bility distribution is defined. Nodes without parents are as-

signed unconditional probability distributions and those with

parents are assigned conditional probability distributions, that

is: P(Ai|B1, ...,Bn) where B1, ...,Bn represents the parents of

A. The joint probability distribution is calculated using the

chain rule:

P(X1,X2, ...,Xn) =
n

∏
i=1

P(Xi|Pai) (2)

where Pai represents the parents of Xi. By applying evi-

dence at certain variables that is P(Ai|e) where e is evidence,

we are able to use the chain rule to determine the probabil-

ity of an event occurring given limited or partial information.

This enables a probabilistic approach to be taken to sensor

fusion. For a detailed introduction to Bayesian networks we

recommend Heckerman [8].

In Figure 2 we present a Bayesian network that infers the

location of a user using the positional data discussed in the

previous section. In this network there are two parent nodes

and two child nodes. The ‘Cell-Zone’ node represents the

Cell-Zone that a user is currently located in. This node con-

tains attributes representing all of the different Cell-Zones

used in the environment. The number of Cell-Zone attributes

is defined by the k value used when clustering the cellular

signal strength data. The ‘WiFi-Zone’ node is the equivalent

of the Cell-Zone node but using WiFi as opposed to cellular

signal strength data. As with the Cell-Zone node, the num-

ber of WiFi zones is determined by the k value used when

clustering the WiFi data. A Composite-Beacon-Zone repre-

sents the unique combination of wireless beacons visible at a

single point in time. Membership to this type of zone is de-

termined by matching the visible beacons in a measurement

sample with those in a given Composite-Beacon-Zone.

We are not agnostic about the type of beacon, cellular of

WiFi, we treat the sighting of each of these types individu-

ally. Initial experiments found that upon returning to the same

position in an environment typically the same 802.11 access

points were visible, only those with weak signal strength lev-

els were sighted intermittently. In contrast, the same set of

cellular beacons was not always visible at the same physical

position. This is due to the limitation of only being able to

concurrently monitor seven cells at any point in time.

At any point in time a user will be located in three different

zones, a Cell-Zone, a WiFi-Zone and a Composite-Beacon-

Zone. This combination of zones forms a qualitative coordi-

nate (Cell-Zone, WiFi-Zone, Composite-Beacon-Zone). By

looking at the frequency that a user is placed in a combination

of these zones enables inference of the relationships between

them. For example, whilst placed in Cell-Zone A a user may

notice that their current WiFi zone at this time is typically

zone B. Therefore when placed in WiFi-Zone B they can in-

fer they are likely to also be placed in Cell-Zone A. In the

Bayesian network this relationship is modelled via the ‘WiFi-
In-Cell-Zone’ node. The ‘Composite-Beacon-Zone’ node rep-

resents the equivalent relationship for Cell-Zone, WiFi-Zone

and Composite-Beacon-Zone.

In the following section we discuss how the conditional

probability distributions can be learnt from historical data and

in Section 4.3 we illustrate how to apply evidence to the net-

work to obtain stronger location estimates.

4.2 Node Probability Distributions

At each node in a Bayesian network a probability distri-

bution must be defined. For nodes with no parents this dis-

tribution is unconditional and for those with parents the dis-

tribution is conditioned upon the parent nodes. As with any

Bayesian network, probability distributions are populated ei-

ther by a domain expert or by learning from historical data.

We learn these probabilities using the same training data used

to create the initial zone based representation of the environ-

ment. To populate the Cell-Zone and WiFi-Zone probability

distributions we use the Euclidean distance from a measure-

ment sample to a cluster (zone). The closer the measurement

sample to the cluster the greater the probability of the user

being located in that zone (cluster). We normalise the data

by dividing the distance from a given cluster to a measure-

ment sample by the sum of distances from that sample to ev-

ery other cluster in the environment.

A Composite-Beacon-Zone consists of a unique combina-

tion of beacons visible at a single point in time. Member-

ship to this type of zone is determined by matching the visi-

ble beacons in a measurement sample with those in the given
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Composite-Beacon-Zone. Certain Composite-Beacon-Zones

will be visible more often in certain Cell-Zones and certain

Wifi-Zones. Hence knowing the current Composite-Beacon-

Zone enables a Cell-Zone or WiFi-Zone positional estimate

to be made with an increased confidence. This relationship

is represented in the Bayesian network by the links from the

Cell-Zone and WiFi-Zone nodes to the Composite-Beacon-

Zone node. As such the conditional probability table distribu-

tion for the Composite-Beacon-Zone is dependent upon the

state of the Cell-Zone and WiFi-Zone nodes. The values in

the conditional probability distribution are populated by cal-

culating the frequency a given Composite-Beacon-Zone was

visible whilst a Cell-Zone and WiFi-Zone combination was

also visible.

The WiFi-In-Cell-Zone node, like the Composite-Beacon-

Zone represents the relationship of being concurrently located

in different types of zone. In this case, the probability of be-

ing located in a given WiFi-Zone whilst also being located in

a given Cell-Zone. Again this enables increased assertions to

be made regarding both the current Cell-Zone and the current

WiFi-Zone. The conditional probability distribution is deter-

mined by calculating the frequency a given WiFi-Zone was

visible whilst a given Cell-Zone was also visible.

In this network the probability distributions for the Compo-

site-Beacon-Zone and WiFi-In-Cell-Zone nodes are static for

a given set of training data. The root nodes, Cell-Zone and

WiFi-Zone nodes are however dynamic and the unconditional

probability distributions are updated with each new positional

dependent measurement.

4.3 Applying Evidence
In this section we demonstrate how it is possible to make a

stronger estimate of a users qualitative location by applying

evidence to the Bayesian network described in the previous

section. We demonstrate how to add evidence to the Bayesian

network to determine the following probability:

P(CZ = A|WZ = A,WICZ = A,CBZ = A)

We start by looking at the probability of being in a partic-

ular Cell-Zone given evidence about the current WiFi-Zone,

WiFi-In-Cell-Zone and Composite-Beacon-Zone. By using

Bayes rule we can write this as:

P(CZ|WZ,WICZ,CBZ) =
P(WZ,WICZ,CBZ,CZ)

P(WZ,WICZ,CBZ)

The states of Cell-Zone are mutually exclusive, hence we

are able to transform the denominator to give:

P(CZ|WZ,WICZ,CBZ) =
P(WZ,WICZ,CBZ,CZ)

∑CZ′ P(WZ,WICZ,CBZ,CZ′)

By using the product rule we can now expand both numer-

ator and denominator to give.

P(CZ|WZ,WICZ,CBZ) =
P(WZ|WICZ,CBZ,CZ)∗P(WICZ|CBZ,CZ)∗P(CBZ|CZ)∗P(CZ)

∑CZ′ P(WZ|WICZ,CBZ,CZ′)∗P(WICZ|CBZ,CZ′)∗P(CBZ|CZ′)∗P(CZ′)

At this point we have an equation that is not representative

of the conditional independencies in our Bayesian network.

We therefore need to update statements such as P(WICZ|CBZ,
CZ) with the relationships shown in Figure 2. This gives:

P(CZ|WZ,WICZ,CBZ) =
P(WZ)∗P(WICZ|CZ)∗P(CBZ|CZ,WZ)∗P(CZ)

∑CZ′ P(WZ)∗P(WICZ|CZ′)∗P(CBZ|CZ′,WZ)∗P(CZ′)

We are then able to simplify by removing the common fac-

tor P(WZ) from both the numerator and denominator. This is

possible because the prior probability for the WiFi-Zone has

no direct effect on the Cell-Zone probability. This simplifica-

tion gives:

P(CZ|WZ,WICZ,CBZ) =
P(WICZ|CZ)∗P(CBZ|CZ,WZ)∗P(CZ)

∑CZ′ P(WICZ|CZ′)∗P(CBZ|CZ′,WZ)∗P(CZ′)

We are now in a position to determine the value of P(CZ =
A|WZ = A,WICZ = A,CBZ = A) by substituting known evi-

dence.

P(CZ|WZ,WICZ,CBZ) =
P(WICZ=A|CZ=A)∗P(CBZ=A|CZ=A,WZ=A)∗P(CZ=A)

∑CZ=A′∈(yes,no) P(WICZ=A|CZ=A′)∗P(CBZ=A|CZ=A′,WZ=A)∗P(CZ=A′)

We can now solve this by substituting the values from the

conditional probability tables. This allows us to make stronger

estimate of a users position thus increasing positioning sys-

tem performance. This process is repeated to determine the

probabilities for the Composite-Beacon-Zone and WiFi-Zone

zones.

5 ASSESSING PERFORMANCE

In Section 3.2 we demonstrated how it was possible to con-

struct a zone-based representation of a spatial environment in

an unsupervised manner. As part of the process the deployer

had to select the number of zones to cover the application

environment. As such, a range of values are used with the

performance of each solution being evaluated and the most

appropriate selected. We use the term ‘solution’ to refer to

both the Cell-Zone and WiFi Zone radio maps together with

the Composite-Beacon-Zone map. In this section we discuss

the different aspects of performance that need to be consid-

ered when selecting a solution.

When considering the performance of a solution we must

assess three factors: reliability, granularity and substantiality.
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In terms of performance, ‘reliability’ refers to consistently po-

sitioning a user in the same qualitative zone when they are at

the same physical position. The positional granularity of a

solution is dependent upon the number of distinguishable or

effective zones. We use the term ‘effective zone’ to refer to a

zone that a user has been identified as being located in. Ide-

ally the number of effective zones will be equal to the total

number of created zones. This is not however realistic with

all types of positional dependent measurements, particularly

noisy sources such as GSM and 802.11 signal strength levels.

As such, we remove unused zones and instead only use the

effective zones.

Using reliability and granularity metrics alone does not in-

dicate whether a solution is suited for a given environment.

For example, a radio map may place an application user in a

single zone 90% of the time and, during the other 10%, briefly

place a user in each of the remaining zones. In this situation

both granularity and reliability metrics may indicate excellent

performance. However, the usability of the solution is rela-

tively poor. In a perfect solution, when given a set of training

data that has been partitioned into n clusters (zones), replay-
ing that data - working out the qualitative location given the

measurement sample from the training data - will result in the

user being placed in each zone for an equal amount of time

( 1
n ). In practice, during clustering some zones ‘grow’ to con-

tain more data than others and hence are typically matched
more often. As such, when assessing solution performance, it

is preferable to have an indication of how many times a user

was placed in a zone for a substantial, identifiable amount of

time. We refer to this aspect of performance with the term

‘substantiality’. We assess this aspect using the following

function:

t =
N

∑
j=0

(
1

j
− s

a
) (3)

where N is the number of generated clusters, j is a given

cluster, a is the total number of measurement samples in the

path and s is the number of times that, during the course of

the path, the users qualitative location was j. The greater the

value of t the poorer the solution has performed in terms of

zone substantiality. We use the term time-error to refer to the

value of t. A time-error of zero would indicate that a user was

placed in each zone an equal amount of time.

6 IN PRACTICE

In this section we discuss the performance of the Bayesian

network described in Section 4.1. First, in Section 6.1 we as-

sess performance using controlled errors in simulations. Then

in Section 6.2 we discuss performance using real-world data

collected in metropolitan environments.

6.1 Simulations
In total we carried out three simulations to assess the ef-

fects of noise of each node in the Bayesian network. For each

simulation we generated 6000 data-points. Each data-point

consisted of seven cell strength readings and a variable num-

ber of WiFi signal strength readings. Half of this data was

used for training and half was used for testing. The data-

points simulated controlled errors. The data-point log files

were processed in the same fashion as log files containing

real world data.

Figures 3a and 3b show the performance levels of the Bayes-

ian Belief Network (BBN) against the K-Nearest-Neighbour

(KNN) when determining a users current Cell-Zone. In simu-

lation one, data was generated to create distinguishable Comp-

osite-Beacon-Zones and WiFi zones. Both types of zone shared

the same borders. The cellular data was created as noise us-

ing random signal strength levels. The aim of this simulation

was to see whether it is possible to reliably infer the current

Cell-Zone despite noisy cellular data. The results of simula-

tion two are presented in Figures 3c and 3d. In this simula-

tion, clearly distinguishable Composite-Beacon-Zones were

created but both WiFi and cellular data were generated as

noise using random signal strength values. In the third sim-

ulation we generated data-points with clearly distinguishable

Cell-Zones, WiFi-Zones and Composite-Beacon-Zones. The

performance of KNN and BBN in this simulation are shown

in Figures 3e and 3f.

When noise was introduced we found the BBN to offer su-

perior performance in terms of reliability over KNN. When

using clear, distinguishable data (at all nodes) we did not

find any noticeable performance gain over KNN. The drop in

terms of granularity in simulation three is due to the generated

data. The data set was structured to create eight distinguish-

able zones. Hence with this data the maximum number of cell

zones was approximately eight. With noisy cellular data but

good WiFi and composite beacon data we found that the BBN

could extend the granularity of the solution beyond a KNN

method. We would have expected KNN to perform at least as

well as the BBN because noisy data will typically result in a

user being placed in a sporadic fashion across a large number

of zones. The BBN should slightly reduce granularity by fil-

tering this noise. With noise at both WiFi and cellular nodes

we found that the BBN was still able to produce promising

reliability results.

In terms of substantiality in most cases we found the BBN

to perform better than KNN. The time-error was typically

higher in simulation two than in simulation one for the BBN.

This is due to the additional noise introduced at the WiFi

node. The time error is high in simulation three despite good

data because the data was structured for eight distinguish-

able zones. Hence, zone numbers lower than this produced

in terms of substantiality, poor performance.

These simulations have shown that the Bayesian network

can successfully fuse cellular, WiFi and wireless beacon data

to infer a qualitative position with an increased confidence.

The network can still provide increased performance of KNN

even if one or two nodes are providing noisy data. In the

following section we discuss performance using real data col-

lected from a metropolitan environment.
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Figure 3: Controlled error simulations. Simulation 1, distinguishable Composite-Beacon-Zones and WiFi zones with noisy

cellular data. Performance in terms reliability is shown in (a) and substantiality in (b). Simulation 2, distinguishable Composite-

Beacon-Zones with noisy WiFi and cellular data. Performance in terms reliability is shown in (c) and substantiality in (d).

Simulation 3, distinguishable Composite-Beacon-Zones, WiFi-Zones and Cell-Zones. Performance in terms reliability is shown

in (e) and substantiality in (f).
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6.2 Real World

In order to assess the performance of the Bayesian network

using real world data we collected measurement samples from

a metropolitan environment. Three volunteers were equipped

with Orange SPV C500 cell phones capable of monitoring

the signal strength levels for up to seven cells. To obtain

802.11 data users also carried an IPAQ 4700 that ran software

to passively scan for WiFi networks. The test area has reason-

able GPS coverage, and a GPS receiver was used to collect a

ground truth for the samples. Samples were collected once

per second. The approach to data collection was deliberately

systematic where volunteers were asked to walk along explicit

paths. This approach enabled an assessment of the reliability

of a users qualitative location to be made. Data was collected

at different times of day over an 8-week period in 2005. In

total over 85 000 signal strength measurements were taken.

In Figure 4 we show the performance of Bayesian Belief

Network (BBN) and K-Nearest-Neighbour (KNN) using real

data collected from two different areas of the same metropoli-

tan environment. In the first area WiFi beacons were only vis-

ible in approximately 11% of the data-points. In the second

area WiFi beacons were visible in approximately 44% of the

data-points. We found WiFi data was not as widely available

as we had expected. We suspect this is due to the distance

from pedestrian paths to nearby buildings. At many points

along the path the volunteer was 10-15 metres from the near-

est building hence signal strength levels were weak and not

always detectable.

In the first area, in terms of reliability, the BBN only per-

formed slightly better than KNN, this is due to the limited

WiFi data. In this experiment 89% of the time the BBN was

determining location using only cellular data and cellular bea-

con data. Cellular beacon information is generally very noisy

in metropolitan environments with a high number of cell tow-

ers provisioning coverage. This is because a typical GSM cell

phone can concurrently monitor only 6 neighbouring cells in

addition to the current, serving cell. In this environment we

found 54 different cells, hence at the same physical position

we would hear different combinations of cells. Thus reduc-

ing the usefulness of cellular beacon information. In terms of

granularity, KNN performed better than the BBN. This is as

expected. The BBN reduces noise therefore typically places

a user in fewer zones than the equivalent KNN approach. In

the second area of the environment, the performance gain in

terms of reliability of the BBN over KNN was more substan-

tial than in the first area. This is due to the increased avail-

ability of WiFi information in the second area. In terms of

granularity, both BBN and KNN decline at a faster rate than

in area 1. We suspect this is reflective of that area of the envi-

ronment - fewer distinguishable zones.

In terms of substantiality we found the BBN to typically

generate lower time-errors, that is, it placed users in cell zones

more equally than KNN. In area one we found that optimum

performance was achieved with between four to eight zones.

In area two as the numbers of zones was raised above six, the

time-error steadily increased. This suggests that this environ-

ment should be covered by six or less zones. This is confirmed

by looking at the performance reliability in Figure 4a.

Given these experiments using data collected from the real

world, the Bayesian network offers a slight increase in re-

liability when only cellular and wireless beacon positional

information are available. This is due to the noise associ-

ated with cellular beacon information, particularly apparent

in dense urban environments. Environments where cellular,

WiFi and wireless beacon information are readily available

benefit most from applying this Bayesian network.

7 CONCLUSIONS AND FUTURE WORK

We have designed a qualitative location system that oper-

ates by inferring location using positional dependent signals

already abundant in our every day lives. We contain mea-

surement and environmental limitations within the location

system and return current location in the form of a spatial

zone. This approach differs from the more traditional quan-

titative based positioning systems that return an estimate and

variable error. We feel that a qualitative approach is particu-

larly appropriate when using ‘noisy’ positional data and when

aiming to provide wide coverage over environments typically

considered ‘harsh’, such as open outdoor environments and

those in built-up metropolitan areas.

In terms of performance, we have found selecting the most

appropriate solution for a given environment to be a trade-off

between two factors; reliability and granularity. As the num-

ber of zones used to represent the environment are increased

so to is the ability to support fine-grained location services.

However, the reliability of placing a user in the same qual-

itative zone at the same physical position is reduced. This

problem can be alleviated by the introduction of additional

sources of position dependent measurements. We have im-

plemented this work using WiFi and GSM signals strength

levels and wireless beacon information. In both simulation

and real world experiments we found the Bayesian network

to offer an increase in performance over a KNN approach.

In this paper we have demonstrated how a qualitative rep-

resentation of the spatial environment can be constructed in

an unsupervised, automated manner after a simple calibra-

tion procedure. Given this type of information, deployers of

context-aware applications can assess what is feasible given

the positional data available to them. For example, consider

a context-aware application designed to be used on a shop-

ping street. The application provides the user with details of

current product offers when the user is standing in front of

a shop. Using the approach presented in this paper the de-

ployer can assess which shop fronts are distinguishable from

other shop fronts. They are able to see the limits of the en-

vironment and measurement service in terms of the areas of

interest, the shop fronts. Currently the calibration phase re-

quires the user to collect positional dependent measurements

in the application environment prior to deployment. For the

future, we intend to make this a continuous process that is car-

ried out passively at runtime. This will enable a current and

useful radio map to be maintained with a minimal overhead.
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Figure 4: Experiment 1 - limited 802.11 coverage. Performance in terms reliability is shown in (a) and substantiality in (b).

Experiment 2 - good 802.11 coverage. Performance in terms reliability is shown in (c) and substantiality in (d).

REFERENCES

[1] Ian Anderson and Henk Muller. Towards qualitative po-

sitioning for pervasive environments. In the Third Inter-
national Conference on ‘Computer as a tool’ (Eurocon
2005), November 2005.

[2] Michael Angermann, Patrick Robertson, and Thomas

Strang. Issues and requirements for Bayesian ap-

proaches in context aware systems. In LoCA, pages 235–

243, 2005.

[3] Paramvir Bahl and Venkata N. Padmanabhan. RADAR:

An in-building RF-based user location and tracking sys-

tem. In INFOCOM (2), pages 775–784, 2000.

[4] Mauro Brunato and Roberto Battiti. Statistical learn-

ing theory for location fingerprinting in wireless LANs.

Computer Networks, 47(6):825–845, 2005.

[5] Yu-Chung Cheng, Yatin Chawathe, Anthony LaMarca,

and John Krumm. Accuracy characterization for

metropolitan-scale Wi-Fi localization. In MobiSys ’05:
Proceedings of the 3rd international conference on Mo-
bile systems, applications, and services, pages 233–245,

New York, NY, USA, 2005. ACM Press.

[6] Anthony LaMarca et al. Place lab: Device positioning

using radio beacons in the wild. In Proceedings of PER-
VASIVE 2005, Third International Conference on Per-
vasive Computing, Munich, Germany, 2005.

[7] Andreas Haeberlen, Eliot Flannery, Andrew M. Ladd,

Algis Rudys, Dan S. Wallach, and Lydia E. Kavraki.

Practical robust localization over large-scale 802.11

wireless networks. In MobiCom ’04: Proceedings of the
10th annual international conference on Mobile com-

puting and networking, pages 70–84, New York, NY,

USA, 2004. ACM Press.

[8] David Heckerman. A tutorial on learning with Bayesian

networks. pages 301–354, 1999.

[9] John Krumm and Eric Horvitz. LOCADIO: Inferring

motion and location from Wi-Fi signal strengths. In Mo-
biQuitous, pages 4–13, 2004.

[10] Andrew M. Ladd, Kostas E. Bekris, Algis Rudys, Guil-

laume Marceau, Lydia E. Kavraki, and Dan S. Wal-

lach. Robotics-based location sensing using wireless

Ethernet. In Proceedings of the Eighth ACM Interna-
tional Conference on Mobile Computing and Network-
ing (MOBICOM), Atlanta, GA, September 2002.

[11] Heikki Laitinen, Jaakko Lahteenmaki, and Tero Nord-

strom. Database correlation method for GSM location.

In Proceedings of the 53rd IEEE Vehicular Technology
Conference, Rhodes, Greece, May 2001.

[12] Anthony LaMarca, Jeffrey Hightower, Ian E. Smith, and

Sunny Consolvo. Self-mapping in 802.11 location sys-

tems. In the Seventh International Conference on Ubiq-
uitous Computing (UbiComp), pages 87–104, 2005.

[13] Julie Letchner, Dieter Fox, and Anthony LaMarca.

Large-scale localization from wireless signal strength.

In Proceedings, the Twentieth National Conference
on Artificial Intelligence, July 9-13, 2005, Pittsburgh,
Pennsylvania, USA, pages 15–20, 2005.

[14] Veljo Otsason, Alex Varshavsky, Anthony La Marca,

and Eyal de Lara. Accurate GSM indoor localization.

In the Seventh International Conference on Ubiquitous
Computing (UbiComp), September 2005.

- 18 -

ICMU2006


