
Mobile Computing in Physics Analysis - An Indicator for eScience

Arshad Ali
*
, Ashiq Anjum**, Tahir Azim

*
, Julian Bunn

, Ahsan Ikram

*
,

Richard McClatchey
**

, Harvey Newman

, Conrad Steenberg

, Michael Thomas

, Ian Willers

*
National University of Sciences and Technology, Rawalpindi, Pakistan

{arshad.ali, ahsan, tahir}@niit.edu.pk
**

CCS Research Centre, University of the West of England, Bristol, UK,

{ashiq.anjum, richard.mcclatchey}@cern.ch

California Institute of Technology, Pasadena, CA 91125, USA,

{conrad,newman, thomas}@hep.caltech.edu, Julian.Bunn@caltech.edu

CERN, CH-1211, Geneva 23, Switzerland Ian.Willers@cern.ch

ABSTRACT

This paper presents the design and implementation of a

Grid-enabled physics analysis environment for handheld

and other resource-limited computing devices as one

example of the use of mobile devices in eScience.

Handheld devices offer great potential because they

provide ubiquitous access to data and round-the-clock

connectivity over wireless links. Our solution aims to

provide users of handheld devices the capability to launch

heavy computational tasks on computational and data

Grids, monitor the jobs’ status during execution, and

retrieve results after job completion. Users carry their jobs

on their handheld devices in the form of executables (and

associated libraries). Users can transparently view the

status of their jobs and get back their outputs without

having to know where they are being executed. In this

way, our system is able to act as a high-throughput

computing environment where devices ranging from

powerful desktop machines to small handhelds can employ

the power of the Grid. The results shown in this paper are

readily applicable to the wider eScience community.

Keywords: Grid computing, Handheld Computing, Physics

Analysis, Context-aware job submission.

1 INTRODUCTION

Handheld computing and wireless networks hold a great

deal of promise in the fields of ubiquitous data access and

in particular for the eScience community. However, the

analysis and processing of information to produce useful,

filtered results is a much larger challenge, since it requires

not just network connectivity, but considerable processing

power as well. Most mobile and handheld devices, and

even many laptop and desktop machines are extremely

limited in the processing power they offer. Many tasks are

themselves so CPU-intensive and time-consuming that a

single machine seems quite insufficient for them. Grid

computing is poised to become the technology that will

address this limitation. We present here a brief description

of a Grid-enabled analysis environment for handheld

devices that we are developing specially for the high-

energy physics (HEP) community. In this paper, we

describe the architecture, design, and implementation of

this Grid-enabled system for the handheld and mobile

devices. Such an architecture is readily adaptable to other

data-intensive eScience analyses.

The CMS (Compact Muon Solenoid) experiment [1] at

CERN, due to commence in 2007, will use Grid-based

data stores for the gigabytes of data it will generate each

minute. In its raw form, the data cannot be used to

generate significant results, because of its sheer quantity

and complexity. The only way of analyzing this data is by

using analysis applications to render it in the form of 2D

and 3D diagrams, examinable on handheld devices, which

scientists can use much more effectively in understanding

the physics taking place in CMS. At the same time,

efficient processing of data is required in order to make the

analysis process as fast and as interactive as possible.

Our aim in this work is to develop a set of physics

analysis applications for handhelds and to optimize them

for maximum performance on the handheld devices. At the

same time, we have been developing a Java-based

framework, called JClarens, for hosting Web and Grid

services. The JClarens framework (described in [2]) allows

users a single point of access to Grid services, such as data

storage and replication services, monitoring services and

job submission services. Using JClarens, users can search

for data on the Grid and can launch analysis jobs on the

datasets from handheld and mobile devices. We not only

use the handheld devices as a powerful data centric

visualization tool but we also monitor the progress of the

Grid jobs from these devices thereby helping the users to

access and monitor the information and devices “on-the-

fly”.

This research aims at making the power of Grid

computing available to resource-limited devices such as

laptops and PDA’s, especially the Pocket PC and Palm. At

the same time, we have been working on porting popular

physics analysis applications to PDAs. Due to the

processing power and resources generally required by

physics applications, none of the applications has yet been

ported to the low resource (usually 32MB RAM) and slow

processing (typically 200MHz to 400MHz) handheld

devices. Moreover, the slow, unreliable and sometimes

intermittent nature of wireless connections has been a

- 200 -

ICMU2006

concern. Combining mobile computing and Grid

computing should allow mobile and PDA users to submit

jobs on the Grid and access its processing which is of great

potential interest in the field of distributed scientific

applications.

This paper is organised as follows: in the next section

we propose a Grid and mobile computing architecture

which is suited for distributed physics analysis. This is

followed by discussion of both the server-side and client-

side design aspects of this architecture in sections 3 and 4.

Thereafter we consider related work and outline the future

direction of our work before drawing conclusions.

2 ARCHITECTURE OF THE ANALYSIS

ENVIRONMENT

The analysis environment, shown in Figure 1, consists of

two entirely decoupled components. On one side are the

resource-limited handheld devices and the applications

specifically designed for these devices; on the other side is

the JClarens Grid service host, which provides the

facilities offered by the Grid to the handheld devices. The

clients comprise simple, portable applications for handheld

and desktop devices, which communicate with JClarens,

using SOAP/XML-RPC. They can be programmed in

C++, Java or any other language supporting XML-RPC.

Once logged on to JClarens, the clients can access the

services offered by it. A detailed overview of the services

offered by Clarens, and the way its clients communicate

with it is described in [3]. As noted earlier the server

basically acts as a Grid service host. It hosts any services

and methods that have to be deployed on the Grid

communicating with clients using the lightweight XML-

RPC protocol. This allows clients to be made extremely

simple, and abstracts away all the complexity of the hosted

Grid services from the client.

To provide Grid functionality on the handheld device, a

separate service for job submission has been implemented

in JClarens. This service (hosted on the resource broker)

receives job submission requests from clients, and then

attempts to determine the most suitable farm available for

job submission, using monitoring information received

from all the connected farms (or standalone computers).

Once this has been located, a job ID is assigned to that

particular job, the job submission request is forwarded to

that particular farm, and a record of where the request was

forwarded is stored in a database. Any subsequent

requests for checking the job status, for killing the job or

for retrieving its outputs are forwarded to the JClarens

server on the farm concerned. Once a job request is

forwarded to a particular farm, the JClarens server on that

farm creates a temporary staging directory for Condor on

the server machine. The executable, required libraries, a

dynamically generated submit file and input files are

copied into the staging directories, and “condor_submit” is

called to submit the job to the Condor pool on the farm.

The clients can subsequently check the status of their jobs

(which can be running on any one of the available farms)

at any time, without having to know where the jobs are

actually being executed. Once the jobs are complete, the

user can retrieve the results of his jobs at any time, using

the relevant XML-RPC calls.

Figure 1: An architectural overview of the analysis environment

- 201 -

ICMU2006

3 HANDHELD AND MOBILE

APPLICATIONS FOR THE GRID

The capability and utility of the system has been validated

using handheld applications that have been developed for

the Personal Java runtime environment on iPAQ Pocket

PCs. The clients we have developed can be run on any

mobile device that supports Java. Once installed users can

use these applications irrespective of any underlying

networks; wireless, wired or mobile. These clients were

mainly developed for physicists and scientists to access and

analyze data anytime on mobile devices (but of course are

more generally applicable in other eScience applications).

Later, considering the enormous size of data which is often

required by scientists for analysis, we proposed to distribute

storage and computation resources on the Grid. In this way

we maintained the ubiquitous access and analysis of data;

we also saved low resource mobile devices from enormous

storage and computation. However, these clients can be

easily customized for any solution that requires heavy

computation and storage from mobile devices. A description

of the clients developed and the features offered by them for

interactive analysis follows.

3.1 Java Analysis Studio(JAS) & JASOnPDA

The Java Analysis Studio (JAS) has been developed at the

Stanford Linear Accelerator (SLAC) [4]. JAS is a physics

analysis tool used for analyzing data obtained from linear

accelerators in the form of 1D-2D histograms as shown in

figure 2. Apart from 1D-2D analysis, JAS offers numerous

other facilities, which include comparison of displayed

histograms with predefined mathematical functions

(Quadratic, Cubic, Gaussian, polynomial, Lorentzian etc),

the fitting of these functions over the displayed histograms

for statistical analysis (peak value, average value etc), and

executing individual analyses code on selected datasets.

Figure 2: Java Analysis Studio (JAS) (above) running on a

Desktop Machine.

JASOnPDA [5] was our first application for the

PocketPC. JASOnPDA is the scaled down version of Java

Analysis Studio, especially designed for constrained

handheld devices. JASOnPDA provides the essential

analysis utilities of Java Analysis Studio on PocketPC

devices, and was developed using J2SE v1.1. JASOnPDA

allows mobile users to log on to the JClarens server using a

certificate-based authentication procedure. Once

successfully authenticated, the user is allowed to access files

stored at the server. The remote browsing facility allows

users to browse the directories served by JClarens and to

look for desired ROOT files. The selected ROOT [6] file is

analyzed and a tree structure displays the hierarchy of

objects in the ROOT file. The user can move along the tree,

selecting any object from the tree structure, and the selected

object will be displayed in the form of 1D-2D Histograms in

the display panel as shown in figure 3.

Figure 3: JASOnPDA running on a PDA showing features

of histogram plotting, fitting, and statistics calculation.

In order to submit jobs to the Grid using JClarens,

JASOnPDA allows users to select the file that will be used

as the job’s executable. It also allows users to type in or to

select a file that will be used as the submit file. Once this has

been carried out, the user can select the input files that will

be used as the input for the jobs, and can finally submit the

job. A notification is received when the job is successfully

submitted, after which JASOnPDA periodically polls

JClarens for the jobs’ status. As soon as the job is complete,

a menu is displayed showing the files on which the job

execution was successful. The user can then select a

particular file to get the resulting output of the job execution

on that particular file. In this way, users on handheld devices

can submit jobs on compute farms, and at the same time, get

back outputs of the job execution. Statistical fitting features

from JAS have also been ported. The user can also view

statistics information related to the histogram displayed on

the screen. Keeping in view the small screen size of the

PocketPC, different viewing options are also provided.

To overcome the issue of intermittent, unreliable

connections during the transfer of large datasets and files,

the downloading process for large files is carried out by

dividing the size of the file into small chunks, and

downloading those small file chunks in steps, rather than

using a single connection to transfer the entire file. This

allows us to checkpoint the file transfer process and to

ensure that if there is a disconnection at any stage, the entire

- 202 -

ICMU2006

dataset is not lost, and downloading can be resumed from

the latest checkpoint.

Recently, more features for extensibility have been added.

Interfaces have been exposed that allow users to write their

own analysis classes for different file formats. This provides

users the flexibility to select the procedure by which their

file will be analyzed and to have its contents displayed. To

specify the class to be used for analysis, the user only has to

give the name of the class in a simple properties file. In this

way, the user can easily plug in the classes that (s)he wants

to use for handling new file formats and user-specific

custom file formats.

3.2 WWW Interactive Remote Event Display

(WIRED) and WiredOnPDA

The WWW Interactive Remote Event Display (WIRED)

[7] was a joint venture between Stanford Linear Accelerator

(SLAC) and the European Organization for Nuclear

Research (CERN). WIRED is one of the first physics event

displays written in Java for use on the World-Wide-Web. It

provides a framework for writing event displays as shown in

figure 4. It is in active use by the BaBar and GLAST

experiments and the LCD detector study at SLAC.

Figure 4: WWW Interactive Remote Event Display running

on a Desktop machine.

WiredOnPDA is another of our analysis applications

developed for PocketPC devices. As the name suggests,

WiredOnPDA provides analysis features of the WWW

Interactive Remote Event Display (WIRED) on a PocketPC

and is presented in figures 5 and 6. WiredOnPDA accesses

data using JClarens in the same way as JASOnPDA.

Figure 5: Two views of WiredOnPDA displaying events

from a HepRep2 file (left) and detector geometry (right).

As mentioned earlier, the user has to pass a security check

by providing a valid certificate and key. Once authenticated,

the user can access the remote server and can select any

HepRep2 event file placed on the server.

Figure 6: Two views of WiredOnPDA displaying event data

and the structure of a HepRep2 file in separate panes.

Once the user selects a file from the JClarens server, the

file is downloaded into the RAM and a SAX XML parser

[8] parses the information stored in the file. “Drawables” are

then extracted from the parsed data and are displayed in a

hierarchical tree structure in a WiredOnPDA tree panel.

User can then select any “drawable” from the tree and it will

be displayed in the display console. Again, keeping in mind

the small screen size of the PocketPC, various display

options are provided in order to utilize the maximum screen

space for event display. As shown in the screenshot figures,

the application is provided with a tool bar that allows the

user to scale, rotate or zoom the displayed event for

improved analysis.

WiredOnPDA also had some issues on its initial release,

most of which were regarding performance. The main

reason for non-optimal performance was the poor parsing

speed of the SAX parsers in PersonalJava. Performance

analysis has shown that the reason for this slow parsing is

due to the differences in implementation of the PersonalJava

virtual machine compared to the J2SE virtual machines. To

address this issue various parsers were tried and tested

including Xerces [9], Crimson [10], KXML [11] and Piccolo

[12]. Piccolo has so far proved to be the fastest performer,

with the best possible results amongst the parsers.

3.3 Intermittent Connections and Data

Transfer

Since wireless networks can be subject to intermittent

network connection and loss of data during data transfer we

have devised a mechanism to cater for interrupted

connections which works as follows. Applications keep a

log of the files transferred and the number of bytes of the

file that have been transferred. Files were downloaded in N

kilobyte chunks into a temporarily-created file, and every n

kilobytes, the entry for the file was updated. Once a file is

- 203 -

ICMU2006

totally transferred, the entry for the file was removed from

the log, and the temporary file was deleted. If the connection

was disconnected (such as when the timeout expired or the

PDA itself detected a broken connection) the user simply

has to wait until (s)he gets next connected and then tries to

download that file again. However, since the extent of the

file downloaded was saved in the temporary file and the

number of correctly transferred bytes was stored in the log,

the download can be restarted from that number of bytes.

4 SERVER SIDE DESIGN

The server side relies mainly on the JClarens framework

and the services provided by it. A detailed description of the

clients is given in section 3. Here we describe the overall

design of the server-side Grid service host, how jobs are

actually submitted to the Condor job scheduling system, and

how they are managed. A modified version of Apache’s

XML-RPC [13] classes is used to provide XML-RPC

parsing and processing capabilities. The XML-RPC server,

encapsulated in a Java servlet, is responsible for processing

incoming requests, for extracting information about what

services and methods to invoke, and for writing out

responses in XML. In addition, we have also modified it to

be able to write back responses directly in a binary form, to

reduce overheads during binary file transfers.

The major components on the server side are detailed in

the following sub-sections.

4.1 Authentication and Authorization

Authentication and authorization of valid users and virtual

organizations (VOs) is one of the most important

requirements of any Grid-enabled system. JClarens carries

out authentication using a GSI-based [14] security protocol.

The server and clients use X.509 certificates and RSA keys

for authentication. A detailed description of Clarens

authentication protocol is given in [2]. Authorization is

carried out using access control lists (ACLs) maintained in a

database. The database system available by default is

MySQL [15], although any other DBMS can be easily

plugged-in by providing a suitable JDBC driver, and by

modifying the configuration settings in a properties file.

The database contains the distinguished names (DNs) or

substrings of DNs that are allowed or denied access to

various services. A set of methods is also available for

manipulating these ACLs by system administrators. Besides

users’ DNs, the names of the VOs can also be used to

configure access control for large groups of users or VOs.

JClarens also provides data browsing, searching and

downloading capabilities. Using the “file” service, users can

browse files, search for files using “wildcards”, and search

within files. They can also download files and find out the

validity of downloaded files using md5 hash values.

4.2 Monitoring service

A prototype monitoring service has been developed which

reports monitoring information to a central JClarens server,

hereafter known as the resource broker. The monitoring

service gathers monitoring information using a companion

End-host Monitoring Agent (EMA), a monitoring product is

also currently being developed. EMA gathers information

such as the CPU clock rate, CPU usage, Memory Usage and

Last 1, 5 and 15-minute average load values. These

parameters are used to calculate a “load coefficient”, which

describes the load on a particular system in quantitative

terms. The coefficient is calculated using an empirical

formula:

Coeff. = ((1-CPU_Usage/100)*-1*Clock_Rate) + ai Mi

Where CPU_Usage is the percentage of CPU power being

used, Mi is the value of the i’th monitoring parameter and ai

is an experimentally determined weighting factor for the i’th

monitoring parameter

Currently the monitoring parameters being used are the

percentage of memory being used, the Disk I/O in Mbps, the

average CPU load during the past one minute (Load1), and

the number of currently executing processes.

Since CPU Usage indicates how much the CPU is being

used, (1-CPU_Usage/100) in the first term shows the

proportion of the CPU that is free. In addition, because -1 is

used as a factor in the term, the more the CPU is free, the

lower is the value of the first term. The second term in the

formula indicates the load being added to a node because of

other factors, like Disk I/O, memory I/O and other factors.

In this way, the lower the value of the coefficient for a node,

the lower is the load on that node.

Every few seconds (10 by default), this coefficient value

is sent to the resource broker as an XML-RPC call, where it

is stored in a database, along with the URL of that particular

server. This monitoring information is used at the time of

job submission to decide where to forward jobs for

execution. In order to provide the resource broker more up-

to-date (and hence more accurate) monitoring information

about a server, the interval after which the data is published

to it can be decreased. However, this can result in the

generation of more network traffic. To compensate, the

network traffic can be reduced at the expense of updated

monitoring information by increasing the interval after

which the data is published. Therefore, it is up to the

administrator of each site to determine a threshold interval

that can increase the accuracy of the information published

and keep network traffic down to a manageable level.

4.3 Job submission service

The job submission service is designed to submit jobs to

the least loaded computer or a farm on the network (LAN or

WAN). The job submission service receives requests for

submission of a job from handheld clients with the

following parameters:

1) The name of the job

2) The binary code of the executable

3) The submit file

4) The name of the submit file

5) The names of the input files

The handheld clients themselves do not provide the input

files at present. Instead the clients request the JClarens

- 204 -

ICMU2006

server for files available in its file publishing area and select

the ones on which they wish to perform analysis.

On receiving a job submission request (condorSubmit),

the receiving JClarens server gets the minimum load

coefficient reported by the other peer servers from the

resource broker. It then forwards the job to the least loaded

peer. Note that the peer is basically a JClarens server

running on another computer or on the head node of a

compute farm.

When a peer JClarens server receives a forwarded job

submission request from another peer, it creates a temporary

staging directory for Condor on the local hard disk (see

figure 7). It then generates a unique job ID for the request

and creates a subdirectory in that folder with the same name

as the job ID. A number of subdirectories are then created in

the job’s particular subdirectory equal to the number of

input files and the executable and the submit file are copied

into each of the subdirectories, naming them the same as the

file names in the request. If the forwarding peer is the local

host itself, the server copies the file from the local file

system to the appropriate subdirectory directly. Otherwise, it

downloads the file from the forwarding JClarens server

using the “file.read” call.

Once the staging directories are prepared, JClarens

submits the jobs to Condor by executing “condor_submit”

calls on the submit file. Condor submits jobs in logical

groups called “clusters”. A mapping between the jobs

themselves and the clusters to which the jobs have been

submitted is also stored in a database.

Condor [16] then takes over the allocation of the

individual jobs to different machines in the Condor pool and

ensures that the jobs are completed and the results returned

to the respective directories. While Condor executes the job

on the pool, the client can repeatedly poll JClarens to check

the status of its jobs. Because only the job ID is required to

check the status of a job, a very lightweight XML-RPC

request has to be sent to the server to check the status of a

job.

In case of successful submission, JClarens returns a

unique ID generated for the job, and this is sent to the initial

submitting client through the master JClarens. A table

mapping the job ID with the peer where the job has been

actually submitted is also updated. After that, the client uses

this job ID to inspect the status of the job, or to retrieve its

status at any later stage.

0. EMA periodically sends monitoring information to the

JClarens monitoring interface;

1. The User authenticates, asks for a list of files and then

browses the files;

2. The User gets back the list of files, selects files, and

downloads the files if required;

3. The User submits jobs;

4. The monitoring information is read by JClarens to select

the best place to which the job can be submitted;

5. The Job is forwarded to the best available site;

6. If necessary Input Files are downloaded to the remote

execution site;

7. The User checks the status of jobs repeatedly, gets back

outputs when desired etc.

Figure 7: An overview of the steps involved in submitting

jobs and checking their status:

JClarens retrieves the status of a job with a particular ID

by finding out the peer where the job with that ID has been

submitted. The execution of “condor_q” on that peer gives

the status of all the jobs running on the machine. The status

of the jobs for that particular job ID is extracted by filtering

out the clusters mapped to that job ID from the output of

“condor_q”.

Once the job is complete, the handheld client can retrieve

the outputs of all its jobs through JClarens. Clients can look

at all the output files produced during execution, and can

download the desired output files. In this way, a complex

and time-consuming set of jobs can be rapidly executed on

an underutilized Condor pool and its results displayed and

visualized on the submitting handheld client.

To provide fault tolerance and high availability, the

system has been designed to be entirely self-healing.

Whenever a new JClarens server initiates and reports to the

resource broker, the resource broker informs all the

available servers of this new server. In this way if at any

stage the central JClarens resource broker goes down, one of

the other servers detects this faulty condition automatically,

and can establish itself as the central resource broker for all

the other available servers. In this way, it is ensured that the

system is able to heal itself and remain available for the

clients even if the central resource broker becomes

inaccessible.

Using this architecture, even users on slow-processing

PDAs connected to wireless networks can accomplish

complex high end jobs. They can carry out remote

processing of lengthy operations on powerful machines in

the Condor pool. This allows even handheld devices to

exploit the power of Grid computing.

5 RELATED WORK

Mobile devices have hitherto not been used for launching

and visualizing data intensive applications and jobs. For

desktop machines, on the other hand, a variety of Grid

- 205 -

ICMU2006

enabled physics analysis applications is available. Some of

these include JAS [4], ROOT [6] and WIRED [7]. As

detailed earlier, JAS is used primarily for 1D and 2D

graphical display of histogram data obtained from particle

accelerators. Along with graphical display, it also offers

various mathematical functions to fit along the displayed

data.

WIRED was developed at CERN in collaboration with

SLAC. Wired uses XML based files for graphical rendering

of events and sub component geometry information from

various particle experiments. Also developed at CERN,

ROOT analyzes special format ROOT files in which data is

arranged in a highly efficient, hierarchical structure.

Research is already being carried out to integrate the two

groundbreaking fields of Grid computing and mobile

computing 17]. Even Java-enabled mobile phones have been

targeted for possible integration with the Grid environment,

in order to provide more computationally intensive features

on mobile phones [18]. Oracle and Vodafone announced a

joint initiative to offer mobile Grid computing [25] in which

they would offer enterprise customers integrated mobility

solutions based on Oracle 10g and Vodafone Network

Services.

Our Pocket PC based analysis applications are basically

built around the Java Analysis Studio (JAS) and WWW

Interactive Remote Event Display (WIRED) software, and

have been optimized for the Personal Java [19] environment

on the Pocket PC 2002. On the server side, JClarens is used

to provide a framework on which Grid services are hosted to

provide Grid authentication, job submission, job tracking,

data access, and file browsing services. Another direction

that we have researched is in balancing mobile client load by

using the JADE-LEAP [20] multi-agent system. In this

architecture mobile clients send agents along with job

credentials to a central server which then locates a suitable

site and dispatches the agent along with the job to that site.

After execution the mobile client communicates with

another agent residing in the client to transfer results. This

approach has yielded useful input to the current research and

the work continues in parallel with this effort. The reader is

refereed to [21] for further information on multi-mobile

agents studies.

San Parak et al. [23] describe the disconnected operation

service in mobile Grid computing. They discuss the

intermittent connections but provide little information on the

issues of the data intensive applications for the mobile

devices. Paul and Naian [24] describe an efficient

checkpointing technique for mobile Grid computing systems

and try to overcome the issues posed by the intermittent

connections. EC funded Akogrimo project [28] envisions

that Grid services, pervasively available, should eventually

meeting the needs of fixed, nomadic and mobile citizens in

the ‘everywhere at every time in any context’ paradigm. But

this project is in its initial phases and will take some time to

see the results. Chu and Humphrey [25] describe Mobile

OGSI.NET which is created to promote resource sharing

and collaboration that improves the user experience. Mobile

OGSI.NET extends an implementation of Grid computing,

OGSI.NET, to mobile devices. This actually deploys the

customized Grid toolkit on the mobile device but does not

discuss the data handling and presentation issues on the

mobile devices. Zhi Wang et al [27] describe the Grid for

wireless and adhoc network. They actually test the

applications on warless networks but do not take into

consideration the Grid issues related to the mobile devices.

6 CONCLUSIONS AND FUTURE WORK

The analysis environment presented in this work has been

developed to contribute to eScience in general and the

physics community in particular all around the world, to

help them in their quest for ubiquitous access to data, over

wired and wireless links. But it has yet to reach the high

performance standards that are so easily achieved in the case

of desktop PC-based applications. The slow performance of

handheld devices is a major barrier that has to be overcome

to achieve true interactivity. However, the use of a

distributed job execution and data analysis environment has

enabled us to speed up our analysis applications to a great

extent. Even if a set of jobs is submitted on a standalone

analysis server, users can get back the results of analysis on

almost fifteen event files (each event stored in a 1MB file)

in less than a minute, whereas a standalone PocketPC could

not process more than three or four files per minute.

The distributed architecture of this model makes it unique

as it enables mobile clients to analyze data which are too

large for them to store or process. It shows that if merged,

Grid computing and mobile computing could make use of

the features provided by each technology to engender a new

era of high resource consuming mobile applications. This

can prove to be the first step towards enabling mobile

devices to provide functionality and resources similar to

desktop PCs.

Our PocketPC based applications were demonstrated in

ITU Telecom World 2003 as a part of the “GRID-Enabled

Physics Analysis” demonstration. Also the JASOnPDA

system was presented at the first Grid Analysis Environment

(GAE) workshop at Caltech in June 2005, and attracted a

great deal of attention, due to the fact that it was the first

physics analysis application ported to the PDA.

WiredOnPDA is expected to gain at least the same

amount of attention as its predecessor. Our work on this

analysis environment, however, is far from over. Already

our current work proves that resource-constrained devices

such as the PocketPC can be interfaced with the Grid, and

can play a vital role in the realization of the idea of a Grid-

Enabled Analysis Environment (GAE). This has clear

implications to and application in other areas of Grid-based

science analysis. Mobile and ubiquitous computing has yet

to reach a mature level, where it can compete with desktop

PCs in the kind of applications it can offer. The achievement

of the above mentioned goals should prove to be a giant leap

towards the attainment of this level of maturity.

There are still some ideas that are yet to be implemented

in this project. The most important of these is an even

further decentralized architecture, where there is no master

server at all. Instead all the servers are true peers of each

other and can get monitoring information from a

decentralized source. We are currently working on

developing a monitoring application that shows network

- 206 -

ICMU2006

monitoring information between the client and server and

the client and other available servers or peer to peer (P2P)

nodes. This application will provide data for some of the

new features such as bandwidth utilization and data transfer

rates. Also, it will serve as a utility application by which

users and network administrators can monitor network

performance on their mobile handhelds.

A self-organizing neural network (SONN [22]) can be

introduced to learn usage and load patterns and thus

schedule jobs more efficiently. Another feature that is

planned to be added is the ability to keep a catalogue of all

files available in all the servers on the network, thereby

allowing users to discover any dataset they require without

prior knowledge of the server holding that dataset. One

major advantage would be the ability to get job outputs back

as soon as they are produced rather than having to retrieve

them when the entire job is complete. This would be a major

advance towards more interactivity. Further work on the

handheld client side includes the extension of the analysis

environment to run on PocketPC Phone Edition devices and

to be able to use fast cellular networks such as GPRS, for

data communication with the remote data servers, over the

Internet.

Acknowledgements

The authors wish to record their appreciation of the support

offered by their host institutes and that of the CMS

collaboration at CERN, Geneva.

REFERENCES

[1] D. Bonacorsi et al., Running CMS software on GRID

Testbeds,Computing in High Energy and Nuclear

Physics, 24-28 March 2003, La Jolla, California.

[2] C. Steenberg, E. Aslakson, J. Bunn, H. Newman, M.

Thomas & F. van Lingen., “The Clarens Web Services

Architecture” in Conference on High Energy Physics

(CHEP), 2003, La Jolla, California.

[3] C. Steenberg, E. Aslakson, J. Bunn, H. Newman, M.

Thomas & F. van Linge., “Clarens Client and Server

Applications” in Conference on High Energy Physics

(CHEP), 2003, La Jolla, California.

[4] A.S.Johnson, Java Analysis Studio, The International

Conference on Computing in High-Energy Physics,

Chicago, Illinois, August 31st - September 4th 1998

[5] A. Ali et al., “Investigating the Role of Handheld

Devices in the Accomplishment of Grid-Enabled

Analysis Environment”. Springer-Verlag LNCS Vol.

3033 pp913-917. ISBN: 3-540-21993-5

[6] Rene Brun and Fons Rademakers,

ROOT - An Object Oriented Data Analysis Framework,

Proceedings AIHENP'96 Workshop, Lausanne, Sep.

1996, Nucl. Inst. & Meth. in Phys. Res. A 389 (1997) .

[7] M. Dönszelmann, M.C. Coperchio, P. Gunnarsson,

WIRED - World-Wide Web Interactive Remote Event

Display: A Status Report, Proceedings of the

HEPVIS'96 workshop (Geneva, Switzerland, 1996).

[8] Kenneth Chiu, Madhusudhan Govindaraju, Randall

Bramley Investigating the Limits of SOAP Performance

for Scientific Computing Accepted for publication in

the Proceedings of HPDC 2002

[9] The Xerces parser http://xerces.apache.org/xerces-j/

[10] The Crimson parser http://xml.apache.org/crimson/

[11] The kXML Project http://kxml.objectweb.org/

[12] The Piccolo parser http://piccolo.sourceforge.net/

[13] The XML-RPC HomePage http://www.xmlrpc.com/

[14] V. Welch, F.Siebenlist, I. Foster, J. Bresnahan,

K.Czajkowski, J. Gawor, C. Kesselman, S. Meder, L.

Pearlman, S. Tuecke, “Security for Grid Services” in

Twelfth International Symposium on High Performance

Distributed Computing (HPDC-12), IEEE Press, June

2003, pp.48-57.

[15] The MySQL database http://www.mysql.com

[16] M. Litzkow, M. Livny & M. Mutka, "Condor - A

Hunter of Idle Workstations", Proceedings of the 8th

International Conference of Distributed Computing

Systems, June, 1988, pp. 104-111.

[17] T. Phan, L. Huang, & C. Dulan, “Challenge: Integrating

Mobile Wireless Devices Into the Computational Grid”,

Proc. of the 8th annual int. conference on Mobile

computing & networking. September 2002, pp 271-278.

[18] M. Tuisku, “Wireless Java-enabled MIDP devices as

peers in Grid infrastructure”

(http://Grid.cesga.es/eabstracts/wireless_Grid.pdf)

[19] Sun Microsystems Inc., Personal Profile, Personal Basis

Profile, and Personal Java

(http://wireless.java.sun.com/personal/)

[20] The JADE-LEAP system http://leap.crm-paris.com

[21] N. Ahmad et al., “Distributed Analysis & Load

Balancing System for Grid Enabled Analysis on Hand-

Held Devices Using Multi-agents Systems” Springer-

Verlag LNCS Vol. 3251 pp947-950 ISBN: 3-540-

23564-7

[22] H. Newman & I. Legrand., “A Self-Organizing Neural

Network for Job Scheduling in Distributed Systems”

CERN CMS NOTE 2001/009

[23] Sang-Min Park, Young-Bae Ko, and Jai-Hoon Kim,

"Disconnected Operation Service in Mobile Grid

Computing," First International Conference on Service

Oriented Computing(ICSOC'2003) in Trento, Italy, Dec

2003

[24] Paul Darby and Nian-Feng Tzeng, "Efficient

Checkpointing for Mobile Grid Computing Systems,"

Proceedings of 2005 DOE/NSF EPSCoR Conference,

June 2005

[25] http://www.utilitycomputing.com/news/428.asp

[26] D. Chu and M. Humphrey. Mobile OGSI.NET: Grid

Computing on Mobile Devices. 2004 Grid Computing

Workshop (associated with Supercomputing 2004). Nov

8 2004, Pittsburgh, PA.

[27] Zhi Wang et al. Wireless Grid Computing over Mobile

Ad-Hoc Networks with Mobile Agent,First

International Conference on Semantics, Knowledge and

Grid (SKG'05)

[28] Stefan Wesner et al. A white paper on Mobile

Collaborative Business Grids – A short overview of the

Akogrimo Project

- 207 -

ICMU2006

