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ABSTRACT

Wireless LANs not only provide an effective means of com-

munication, but also allow to detect movement and immo-

bility of a mobile node. This information can, for example,

be employed by Wireless LAN positioning systems to reduce

the lag of location estimates due to sample filtering. In addi-

tion, motion detection has many applications in context-aware

computing. This paper proposes a simple scheme to reliably

detect node movement based on received signal strength sam-

ples from one or more access points. The scheme is evaluated

through extensive experiments in an office environment.

Keywords: Wireless LAN, context-awareness, motion de-

tection

1 INTRODUCTION

Knowledge about whether a user or device is stationary or

in motion can serve a number of purposes. The mobility sta-

tus is an important part of a user’s context and is thus of in-

terest to context-aware systems, e.g. [13]. By itself it can be

employed e.g. to change the behaviour of services and appli-

cations. Furthermore, it can be used to enhance the informa-

tion provided by rather coarse positioning systems, such as

the well-known Active Badge system [16] or other proxim-

ity detection schemes [2] [12] [9]. Also related to user loca-

tion is the application of movement information to accurate

Wireless LAN positioning systems, such as RADAR [1], Ho-

rus [18] and Ekahau [11]. These systems essentially perform

pattern recognition on the received signal strength typically

measured at the mobile node. In general, signal samples fluc-

tuate heavily even in environments with few moving objects.

To compensate for these fluctuations Wireless LAN position-

ing systems often smooth the samples by means of a moving

average. Consequently, these systems suffer from a temporal

lag, which becomes evident when tracking a moving node.

On the other hand, without sample filtering the location esti-

mates tend to be instable, which becomes evident when pe-

riodically locating a stationary client. A motion detector can

eliminate the necessity for this tradeoff between lag and ac-

curacy. When the client is stationary the location algorithm

can employ a filter with a large window size to improve the

accuracy. When the client is in motion the window size can

be decreased or the filter can be bypassed completely, to min-

imise the lag. Note that this paper is a spinoff of the work on

the Wireless LAN location determination scheme presented

in [15]. This scheme mandates a motion detector, since it in-

herently models user mobility.

Specialised motion tracking and motion detection systems

make use of a range of sensing technologies [17]. Examples

include mechanical, inertial, acoustic, magnetic and optical

sensing. Such dedicated systems typically provide highly ac-

curate information concerning position and even orientation

and are thus akin to positioning systems. Unfortunately, ded-

icated motion detectors require additional hardware, which is

often unwieldy, impractical or simply not available. However,

the applications described above do not necessarily benefit

from accurate and complete information about the mobility

status. For the purposes described above it is sufficient to

know whether the user is moving or not.

Since Wireless LAN positioning systems were mentioned

as a potential application of a motion detector, it should be

noted that successive location fixes can in principle be used

to infer the mobility status. The scale of motion that can be

detected in this manner, depends on the accuracy of the em-

ployed positioning system. Simple proximity detection sys-

tems, for example, are typically not able to detect small-scale

motion within a particular cell. However, even positioning

systems with a high spatial and temporal resolution do not

necessarily lend themselves to motion detection. For exam-

ple, Wireless LAN positioning typically requires reference

signal patterns and their associated locations. Access to this

information may be restricted to certain user groups and de-

vices or it may not be available at all. Consequently, position-

ing systems in general cannot effectively be used to detect

small-scale node movement.

This paper presents a simple scheme to detect motion based

on the received signal strength measured by a Wireless LAN

node. The scheme solely relies on the data provided by the

Wireless LAN network interface card and neither requires in-

formation about the environment nor the network. The fol-

lowing section provides some background information about

the employed signal strength data. Section 3 then discusses

how the reference data that is used to evaluate the proposed

detector was obtained. In Sect. 4 the motion detection scheme

is presented. This section also discusses an attempt to also

estimate the direction of movement. Concluding remarks are

made in Sect. 5.

2 BACKGROUND

Most commercial IEEE 802.11 [5] Wireless LAN equip-

ment provides access to radio signal strength measurements.

Access points periodically emit beacon frames, which carry

information about the parameters and capabilities of a cell,

known as basic service set (BSS) in 802.11 terminology. Mo-

- 2 -

ICMU2006



0 5 10 15 20 25 30 35 40
10

12

14

16

18

20

22

24

26

x [m]

y 
[m

]

AP1AP1

AP2AP2

AP3AP3

Figure 1: Floor plan showing where stationary measurements were conducted.

bile nodes use this data when deciding which particular access

point to associate with. Among other information, beacon

frames report about the network name and the basic service

set identifier (BSSID), i.e. the unique identifier of an access

point. Implicitly these beacons also carry information about

the link quality, which can be derived from the signal strength

and the background noise. The node sweeps from channel to

channel and records information from any beacon it receives.

This process is called passive scanning and is performed reg-

ularly to determine the access point with the best link quality.

In this manner the signal strengths of all visible access points

can be determined. 802.11 specifies a second mode of scan-

ning, where the node actively probes for the available BSS.

This process is called active scanning. The amount of in-

formation that can be retrieved in this manner is essentially

the same as with passive scanning. Note that a node cannot

communicate during the scanning process. Still, scanning is

necessary to ensure the best possible link quality.

The idea of the proposed motion detection scheme is to

analyse the statistical characteristics of the sample series re-

lated to one or more access points. The underlying assump-

tion is that a node’s motion influences the sample series in

a different manner than the movements of other objects in

the environment and the signal fluctuations caused by multi-

path fading. The next section describes the reference mea-

surements employed to test and evaluate the scheme, that will

be presented in Sect. 4.

3 REFERENCE DATA

The following investigations are based on reference mea-

surements conducted in an office wing of the Department of

Computer Science of RWTH Aachen University. The wing,

depicted in Fig. 1, has a dimension of about 40 m× 15 m and

is covered by three access points (APs) placed on this floor.

Two types of 802.11b access points were used: AP1 and AP3

were L-11 access points from Lancom Systems and AP2 was

an Orinoco 1200 from Lucent. All access points (marked by

circles) were equipped with omni-directional antennas. The

signal strength measurements were conducted by a number

of standard notebooks equipped with IEEE 802.11b network

interface cards. The samples were retrieved using the Wire-

less Research API (WRAPI) [14] developed by Microsoft Re-

search and the University of California, San Diego. Measure-

ments were carried out for stationary and mobile nodes as

described in the following.

3.1 Stationary Measurements

The crosses indicate the 52 locations where the received

signal strength (RSS) for immobile nodes was measured. The

locations within rooms were chosen opportunistically, depend-

ing on the available space for the measurement equipment;

in the hallway measurements were conducted systematically

every meter. The measurements were carried out on four days

during the late afternoon and early evening hours; at these

times few (sporadically moving) people populated the envi-

ronment. Three different notebooks equipped with Wireless

LAN interface cards were used to measure the RSS. It was

measured in dBm with a resolution of 1 dBm. Samples were

taken for at least 10 minutes each with a frequency of one

sample for second, resulting in more than 600 samples per

access point and per location. The three access points were

permanently visible at all locations, except for AP1 which

lacks samples for two locations in the large room in the lower

left corner.

3.2 Mobile Measurements

For the mobile measurements a notebook equipped with a

Wireless LAN card was carried at walking speed down the

hallway from left to right and back. The mobile measure-

ments took place at noon and the environment was slightly

populated. As before, RSS samples of all visible access points
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Figure 2: Profile of the walk along the hallway

were recorded once a second. The node’s true position was

measured using a laser range scanner placed in the doorframe

below AP3. The range measurements were conducted roughly

every 200 ms with a distance error of less than one centimeter.

The profile of one such walk is depicted in Fig. 2.

4 MOTION DETECTION

In some application domains, e.g. mobile robotics, spe-

cialised hardware motion detectors are commonplace and thus

motion detection is considered a minor issue. Autonomous

robots are also typically in control of their actuators, i.e. their

wheels or tracks. Consequently, when a robot uses its actu-

ators to move and the motion detector returns corresponding

measurements, there is a high probability that movement is

actually taking place.

Of course special equipment for sensing movement can not

always be assumed or required from users or their devices.

Moreover, many applications do not foresee the control of ac-

tuators such as the user’s feet. Hence, reliable detection of

node movement solely based on RSS samples is a challeng-

ing problem, when one considers the high fluctuations in sig-

nal strength even when a terminal is stationary.

4.1 Requirements on motion detection
Since only RSS measurements with respect to the visible

base nodes can be made use of, the mobility status of a mo-

bile node must be derived through some filter process; the

implementation of this process is called motion detector in

the following. In order to be effective any such detector has

to fulfil the following three requirements:

Low latency. The motion detector should detect node move-

ment as quickly as possible, i.e. instantaneously at best.

It should not rely on sample sets covering extended pe-

riods of time.

Location independence. The detection accuracy should be

independent of the node’s location, i.e. of the reception

characteristics and number of visible access points.
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Figure 3: RSS samples taken once per second from mobile

and stationary terminal.
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Figure 4: Sample variance of a sliding window with five sam-

ples.

Low error probability. The probability for falsely detecting

motion, when a node is actually stationary should be

as low as possible. Likewise, the probability for falsely

reporting immobility, when a node is actually in motion

should be as low as possible.

In addition, it would be instrumental for modelling move-

ment, if the chosen filter provided an indication of the nodes’s

speed and direction.

4.2 Initial observations

Through experiments it was discovered that the sample vari-

ance of a series of measurements can be used to detect ab-

solute movement. The sample variance of a set of RSS sam-

ples {ri}n
i=1 is defined as

(1) s2 =
1

n − 1
·

n∑
i=1

(ri − r)2
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Figure 5: Regression coefficient for a sliding window with ten

samples.

where r is the sample mean. It is the best unbiased estimate

for the true variance assuming that samples are normal dis-

tributed. Signal strength samples generally do not follow a

normal distribution, although this is often assumed for rea-

sons of simplicity. At this point, however, the true distribution

function is irrelevant, since the aim is to detect the motion of a

mobile node and not to estimate the true variance. For a fixed

node the sample variance of a sliding window of samples sel-

dom exceeded unity, even in highly dynamic situations. This

value was well overstepped at normal walking speed. This

phenomenon was first observed in [15] and later indepen-

dently described in [8]. However, the former publication does

not describe the details of the detection process while the lat-

ter publication uses a more complex algorithm based on hid-

den Markov models. Furthermore, the latter scheme only uses

a single access point. It will later be shown, that the results

improve considerably when measurements from multiple ac-

cess points are employed.

Figure 3 shows the course of RSS measurements over a

30 s time period for a fixed and a moving node. In both cases

samples were taken once a second. The corresponding fil-

tered values are depicted in Fig. 4. The variance filter in this

example uses a backward window n of five samples. (Note

that values for sample indices less than the window size do

not reflect the true performance of the filter.) The figure in-

dicates that motion detection based on the use of the sample

variance is a promising approach. Yet, some questions remain

to be answered, namely how to set the threshold and the win-

dow size to ensure timely and reliable detection. The fraction

of false positive and false negative detections given a set of

parameters is also of interest.

4.3 Detecting direction of motion
Before the parameters and the quality of the variance-based

approach are determined, a potentially more powerful tech-

nique is examined. The variance filter apparently only detects

motion as such and does not indicate the mobile node’s speed

and direction. The curves in Fig. 3, however, suggest that
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Figure 6: Ratio of false direction estimates depending on the

size of the sliding window.

a tendency of the signal strength over time can be derived

even when using few recent samples. Decreasing signal lev-

els indicate motion away from the access point and vice versa,

whereas stable RSS implies immobility. A method to capture

the prevailing trend is to interpret a series of recent samples

as a linear function of time. In other words, it is assumed that

the sample set {ri}n
i=1 follows

(2) ri = a + b · i + εi

where the εi are random errors. The gradient b is estimated

by performing a linear regression analysis, through a least

squares fit of the sample data. When the regression coeffi-

cient, i.e. the estimate for the gradient, is positive, there is

motion towards the respective access point, whereas a nega-

tive coefficient indicates movement away from the AP. Fig-

ure 5 shows the course of the regression coefficient for the

sample series depicted in Fig. 3. The technique apparently

works well in this example – alas, it was found, that over the

entire reference data set it is not able to provide reliable and
timely results at the same time.

As an example, consider the hallway of the testbed depicted

in Fig. 1. When moving from left to right the filter should

yield a negative regression coefficient for the samples from

AP3 and a positive coefficient for AP1; the opposite is true

for movement from right to left. Figure 6 shows the ratio

of false direction estimates depending on the sliding window

size and the respective AP. For the data from AP1 the ratio

decreases as the sliding window gets larger. This could be ex-

pected, when assuming constant movement in one direction.

However, even when using ten samples roughly one tenth of

direction estimates are wrong. Such a large window conflicts

with the requirement for low latency. Assuming one sample

a second and an average walking speed of 1.2 m
s , the node

would have moved 12 m before the motion detector yielded

a reasonable estimate for its direction. The results are even

worse when using the data from AP3, which can be attributed

to the non-monotonic behaviour of the received signal caused

by a propagation phenomenon known as wave guiding. Em-
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Figure 9: Beta error depending on alpha error for different

window sizes.

ploying a robust regression technique (e.g. as described in

[4]) does not improve the results substantially. This approach

to motion detection is thus not further investigated.

4.4 Motion detection with the variance filter

The requirement for timeliness demands that the motion

detector can operate on very few samples. On the other hand,

the requirement for accuracy calls for the detector to reli-

ably distinguish motion and immobility of a node. Intuitively,

these demands are to some extent contradictory. It can be

expected that the higher the needed accuracy, the greater the

number of samples. This supposition is substantiated by Fig. 7

and Fig. 8. The graphs show the dependency of the detec-

tor’s accuracy on the number of samples and the fixed thresh-

old; they are based on measurements conducted by a fixed

and a moving node as described in Sect. 3. Sample variances

above the threshold signal a moving node, whereas variances

below the threshold indicate node immobility. Trivially, the

higher the threshold, the lower the fraction of false mobility

detections (Fig. 7) and vice versa (Fig. 8). The expectation

of increased accuracy when using a larger number of samples

is also confirmed. (Although in the case of the fixed node

the accuracy surprisingly improves with smaller window sizes

when the threshold is low.)

The interrelation between the two types of errors is sum-

marised in Fig. 9. The curves show the dependency of the

beta-error (i.e. falsely detected immobility) on the alpha-error

(i.e. falsely detected motion) for different window sizes. It

can be seen that both errors can be kept low, when choosing

a large window size. Unfortunately, large delays conflict with

the requirement for low latency, as has been laid out above.

For a window of five samples the beta-error is about 22 per-

cent, when setting the threshold such that the alpha-error is

ten percent. This accuracy can be considered sufficient, yet it

does leave room for improvement.
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Figure 10: Accuracy of motion detection based on samples

from a single AP vs. samples from multiple APs.

4.5 Using multiple access points
So far only samples with respect to a single access point

were employed. The detector’s accuracy can be well increased,

when considering samples from multiple access points. Let

{rij}nj

i=1 denote the sample set associated with APj . The

function

(3) γτ (j) =

{
1 if 1

nk−1 · ∑nj

i=1 (rij − rj)
2 ≥ τ

0 otherwise

yields unity, when the sample variance of APj’s sample set

exceeds the threshold τ . Assuming k access points are visible,

then the motion detection function

(4) Γτ,k =
k∏

i=1

γτ (i)

equals unity, when the variances of all sample sets pass the

threshold. This result is interpreted as node motion, whereas a

value of zero signals immobility. The rationale behind Γτ,k is

that true motion generally causes the sample values of all APs

to fluctuate more strongly. Surely, a fixed node in a highly

dynamic environment will experience great variations in the

sample values associated with a subset of the visible APs. In

practice, it is, however, unlikely that all sample sets are af-

fected simultaneously.

Figure 10 compares the alpha- and beta-errors of the Γτ,k

(k > 1) motion detector with those of the single AP scheme

(Γτ,1). (Note that the axes have been clipped off at 50 percent

in order to provide more detail where it matters.) Using k = 3
APs and nj = 5 recent samples from each AP yields sig-

nificantly lower errors compared to the results based on data

from one AP. Indeed, the accuracy corresponds to the single

AP scheme with a window size of ten. Even the use of data

from just two APs provides a great improvement. Often more

than three access points are visible, yet it is recommendable

to use only the three strongest APs to ensure that a sufficient

number of samples is available.
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Based on these results the movement detector’s threshold

can be set to τ = 0.6. With three access points and a sliding

window of five samples per AP, this yields roughly five per-

cent false positives and about ten percent false negatives. This

represents a significant improvement over the more complex

scheme presented in [8], which reportedly shows about 13

percent false positive detections. (Results for false negatives

are not given.)

Of course, these parameters are to some extent application-

specific and can take other values. For example, an appli-
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Figure 11: Percentage of falsely detected mobility for each location.

cation might trade accuracy for timeliness by decreasing the

window size or it could modify τ to decrease the ratio of false

positives or negatives. Also, note that these results are only

valid for the particular environment where the measurements

were conducted. However, the characteristics of the reference

sample series are similar to those described in other publi-

cations, e.g. [10], [3], [6] and [7]. It is thus reasonable to

assume that the scheme’s detection accuracy will be compa-

rable in other environments.

To conclude the discussion of the motion detector, the de-

pendency of its accuracy on the particular location is inves-

tigated. Figure 11 visualises the percentage of false mobil-

ity detections for the locations where samples were collected.

The circle radius corresponds to the error percentage. At posi-

tions with an error of five percent or more the numerical value

is also shown. Apart from two exceptions all sample series

leading to large errors were collected within rooms, i.e. with

no line of sight to an access point. Two of these locations

exhibit exceptionally large errors with 14 and 16 percent of

false positives. True location independency of the accuracy

demands that the errors are the same at all positions. This is

certainly not the case when looking at the spread between the

errors. Furthermore, similar sized errors seem to agglomerate,

which can also be observed in the corridor. Although location

independence of error is not given in the strict sense, from a

practical point of view all errors can be regarded sufficiently

low.

5 CONCLUSION

This paper has presented a simple motion detection scheme

based on received signal strength measurements obtained from

a Wireless LAN. The experimental evaluation has shown that

the results provided by this approach are quite satisfactory,

particularly when considering the scheme’s simplicity. The

employed reference data was sampled in a typical office en-

vironment; the data’s statistical characteristics correspond to

those reported by other research groups. It can thus be ex-

pected that the detection quality in other office environments

is similar, though this will need to be verified.

An attempt to detect the direction of movement has been

discussed as well. In principle, direction estimates are fea-

sible, yet, a large backward window is required to keep the

number of false direction estimates low. Since timeliness was

identified as an important requirement for motion detection,

the presented direction estimation approach was not further

pursued.

Since the presented scheme is based on signal strength mea-

surements it relies on the scanning procedures defined in the

802.11 standard. It has been mentioned that no communica-

tion can take place while the channels are scanned. Usually

this is not considered a problem, as scanning to ensure link

quality is carried out rather infrequently. The motion detec-

tor, however, works best with a continuous sample stream.

Wireless LAN drivers thus need to be modified to conduct

continuous passive scanning while no communication is tak-

ing place.

Additional future work on this topic includes transferring

the scheme to other types of wireless networks, e.g. to mobile

communication and mobile ad hoc networks. Furthermore, it

should be investigated how the positioning and tracking per-

formance of Wireless LAN location systems is actually af-

fected when sample filtering is made dependent on the mo-

bility status. It can be expected that the accuracy improves

considerably for stationary clients since then the filter’s slid-

ing window can be made arbitrarily large. Still, quantitative

results to support this supposition are necessary.
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