
Distributed Certificate Authority in Cluster-based Ad hoc networks

Ghassan Chaddoud†, Keith Martin‡

†Department of Scientific Services, Atomic Energy Commission of Syria
Damascus, P.O.Box 6091, Syria, gchaddoud@aec.org.sy

‡Information Security Group, Royal Holloway, University of London
Surrey TW20 0EX, U.K, keith.martin@rhul.ac.uk

Abstract

The need to secure communication in ad hoc network is
extremely challenging because of the dynamic nature of the
network and the lack of centralized management. This makes
public key cryptographic services particularly difficult to sup-
port. We propose a distributed certificate authority intended
for deployment in an NTDR cluster-based architecture. We
also outline procedures for maintaining this distributed cer-
tificate authority amongst a highly dynamic membership of
shareholding nodes.

1 Introduction

The increasing interest in ad hoc networks has made their
security a real concern. As a result, ad hoc network security
has been subject to extensive recent study. While much atten-
tion has been spent looking at security of routing protocols
in ad hoc networks, for example [1], [6], [7], [12], [21], [15],
it is equally important to secure communications in ad hoc
networks [20], [19], [13]. In order to employ security mecha-
nisms that are based on public key technology, it is necessary
to establish the supporting key management infrastructure,
which is normally based around the concept of a certificate
authority (CA).

However, security in mobile ad hoc networks is particularly
challenging for many reasons [10], including:

1. the dynamically changing topology;

2. the sporadic nature of connectivity;

3. the vulnerability of links;

4. the limited physical protection of nodes;

5. the lack of centralized monitoring or management points.

The latter is arguably the most crucial for offering public key-
based security services because, in the absence of a global
centralized and trusted authority, establishing a CA can be
highly problematic,if not impossible.

An attractive idea is thus to distribute a CA’s functionality
amongst ad hoc network nodes. A Distributed Certificate Au-
thority (DCA) is realized through the distribution of the CA’s
private key to a number of special shareholding DCA nodes.
When CA-related operations are required, such as issuing or
signing a certificate, checking public keys, or revoking cer-
tificates, a threshold of available shareholding DCA nodes
should participate in the operation.

There has been relatively little work to date on designing
distributed CA services (we will discuss related work in Sec-
tion 4). In this paper we present a new model for a dis-
tributed certificate authority in NTDR (Near-Term Digital Ra-
dio [22]) cluster-based ad hoc networks. The DCA’s private
key is never known by any single node, either during setup
or during certificate authority-related operations. Our DCA is
designed to complement the NTDR security framework pro-
posed in [19].

The remainder of the paper is organised as follows. In Sec-
tion 2 we introduce NTDR networks and briefly outline the
security architecture proposed in [19] to enable security ser-
vices. Section 3 we identify desirable design properties and
present our solution. In Section 4 we compare this solution
with related work.

2 NTDR Ad hoc Networks

This section presents a brief overview of NTDR and a pro-
posed security architecture.

2.1 Overview

A Near-Term Digital Radio (NTDR) ad hoc network [22]
is a cluster-based control structure composed of organizational
clusters, each containing a clusterhead. The clusterheads are
linked together to form the network backbone. Clusters are
formed of mobile nodes within one communication hop from
the clusterhead. Inter-cluster communication is restricted to
clusterheads only. Inside a cluster, nodes can communicate
directly if they are within one hop of one other, otherwise
all communications must pass through the clusterhead. A
clusterhead thus functions as a gateway and the clusterheads
collectively share responsibility for maintaining the routing
backbone. This requires clusterheads to constantly monitor
and distribute amongst themselves information about changes
that occur on the backbone.

Since clusterheads represent potential points of failure in
network operations, nodes adopt an aggressive mode in main-
taining the connectivity of the backbone. To facilitate this,
there is a process by which any node can quickly become a
clusterhead in the event of a connectivity problem. To this
end, each node keeps track of its neighbors by broadcast-
ing periodic beacon messages. A beacon message contains
the sender’s medium access control (MAC) address and the
lowest-numbered MAC address amongst all nodes reachable
from the issuing node. In addition, a clusterhead’s beacon

- 278 -

ICMU2006

message contains, amongst other things, the clusterhead’s or-
ganizational affiliation and a list of cluster members. Nodes
receiving a clusterhead’s beacon message can determine whether
to affiliate with the clusterhead or not.

Keeping in mind power constraints, two different frequen-
cies are used for transmission. The strongest is used by clus-
terheads for inter-clusterhead communication over the back-
bone. The second weaker frequency is used for intra-cluster
communication. Clusterheads are thus requird to use both fre-
quencies.

A node seeking cluster affiliation is more likely to choose
clusters where the signal from the clusterhead is transmitted
at low power but received at high strength, the resulting clus-
ter size is relatively small and the current clusterhead belongs
to an organization recognized by the node. If the current clus-
terhead approves the new node affiliation, the clusterhead up-
dates the cluster membership list and broadcasts this to the
other clusterheads. This alerts all clusterheads to the node’s
new affiliation. A node remains affiliated to a cluster until the
clusterhead relinquishes its role or technical communication
problems, in particular noisy or deformed signals, occur.

2.2 Security framework for NTDR

In [19] a security framework is proposed that identifies
threats related to communications in NTDR ad hoc networks
and designs security services and mechanisms for thwarting
such threats. In this framework, clusterheads play a key role
in carrying out security related functions. More specifically, a
clusterhead authenticates and grants affiliation status to nodes.
Moreover, the clusterhead is responsible for managing inter-
cluster and intra-cluster pair-wise and group-wise cryptographic
keys, which are used to provide confidentiality, integrity, and
authentication services.

Within a cluster, pairwise keys are used to secure unicast
communication between nodes. Group-wise keys are used to
secure group (intra-cluster) communication. Similarly, inter-
cluster communication is protected by the use of pairwise and
group-wise keys at the network backbone level, where in this
case the group-wise key is shared by all clusterheads.

Inter-cluster keys are managed by the clusterheads using
pairwise secret master keys shared with cluster nodes. These
pairwise keys are established during node affiliation, based
on public key techniques. The framework assumes that, prior
to joining the NTDR network, each user gets a unique off-
line certificate) along with any further high-level certificates
that are required to verify off-line certificates of other nodes
in the network (for example, high level certificates of other
organizations managing nodes in the NTDR network) . While
these off-line certificates can be used for a short period of
time, they cannot be used to support online CA services for
network nodes, due to the fact that the NTDR network cannot
support an online CA. This problem motivates the need for the
establishment of a DCA to provide online key management
services to the NTDR nodes.

3 A Distributed Certificate Authority for
NTDR

We first identify some desirable design properties and then
propose a DCA intended to be compatible with them. Our
DCA is based on the concept of a threshold scheme [4], [18],
which is a means of distributing secret shares of a secret in
such a way that a threshold k of shares must be pooled before
the secret can be recovered. We will distribute shares of the
DCA private key amongst shareholding DCA nodes using a
special type of threshold scheme that requires k shareholding
DCA nodes to collaborate on any operation requiring appli-
cation of the DCA private key.

3.1 Design goals

Desirable design properties for a scalable DCA are as fol-
lows:

• Availability Nodes may seek a DCA’s services at any
time and require a response within a reasonable delay
period. However, a solution must take into account the
dynamic nature of an ad hoc environment. It can be ex-
pected that not every shareholding DCA node is reach-
able at any given time and, further, that the collection
of shareholding DCA nodes varies over time. We thus
require protocols to enable shareholding DCA nodes to
leave and join the DCA.

• Security Since nodes may fall victim to different types
of attack (for instance, capture), no important system
secret values are to be trusted to any single node in the
network. Thus, for example, DCA key pairs must be
generated in a distributed way and the DCA private key
should be usable without any single shareholding DCA
node being able to reconstruct it. In addition, a key
refresh protocol is required to ensure that the lifetimes
of critical keys are restricted.

• Reliability Wherever possible, the system should avoid
relying solely on the underlying communication net-
work, since channels or nodes could be compromised.
Where possible, measures should be taken to improve
system robustness.

• Efficiency As nodes are power-limited and communi-
cation bandwidth is relatively low, protocols should at-
tempt to minimize computations, connections and the
amount of data transmitted between nodes.

3.2 Network model

We now review the network model in which this scheme
operates. Although we saw in Section 2.1 that in an ideal
NTDR network all entities can communicate through an in-
tergrated network based on routing through the clusterheads,
it is important to recognize that in reality communications are
not reliable. Any entity can become offline or unreachable at
any time, communications are potentially insecure and error-
prone, and nodes can not be trusted to always be cooperative
(sometimes referred to as node selfishness [13]).

- 279 -

ICMU2006

We assume that the communication model is partially syn-
chronous, meaning that messages are assumed to be delivered
within a fixed bound of time. After a specified period, a mes-
sage is considered lost and treated as a sender failure. Where
possible we will adopt fault tolerant protocols.

3.3 DCA security services

The purpose of having a DCA in an NTDR network is to
make use of public key-based cryptographic services. These
services include support for authentication, integrity, confi-
dentiality, access control and non-repudiation. These are re-
quired between nodes, between nodes and clusterheads, and
between clusterheads. Public key techniques are attractive be-
cause they enable nodes to establish secure links without hav-
ing prior relationships. However public key techniques are
generally computationally intensive and so the application of
public key cryptography in the NTDR security framework is
largely restricted to initial node authentication and key estab-
lishment processes.

Public key cryptography involves two related keys, one of
which is private and the other public. It is essential that the
authenticity and validity of public keys is maintained, and
the normal means of doing so is for a trusted entity (in our
case the DCA) to issue a public key certificate attesting to
this information. The DCA provides all public key certifi-
cate services, in particular issuing, revocation, renewing, and
verification of certificates. When a new node first joins the
NTDR network, it presents its offline certificate to the clus-
terhead with which it intends to affiliate. It should then seek
an on-line certificate from the DCA, which is then used as the
working certificate in the NTDR network.

3.4 DCA architecture

It is entirely natural that we propose that our DCA is dis-
tributed amongst clusterheads, which become the sharehold-
ing DCA nodes. This is because clusterheads hold positions
of responsibility in the NTDR network and are in direct com-
munication with one another, making them the most appro-
priate nodes to fulfill this role. The DCA private key must
therefore be distributed and maintained amongst the cluster-
heads. When a new clusterhead joins the backbone they need
to be issued with a share of the DCA private key. When a node
seeks a DCA services (such as a certificate renewal), the node
first contacts their clusterhead who then takes up the request
with the other clusterheads.

We will define our DCA by specifying the following DCA
operations:

• system setup or bootstrapping,

• applying a DCA private key,

• joining a new clusterhead,

• evicting an existing clusterhead,

• refreshing clusterhead shares.

3.5 Public parameters

Throughout this paper, p and q are large primes such that q

divides p−1, and g is a generator of the subgroup Gq of Z∗
p of

order q. The values p, q and g are public system parameters.
In addition, let h be a hash function whose range is {1, .., q −
1}.

3.6 Bootstrapping

Let H be the initial set of clusterheads at system setup time,
|H| = n, and k be the required threshold of co-operation be-
tween clusterheads. In order to establish a (k, n) threshold
sharing of a private key, we require that all clusterheads par-
ticipate in the construction of the shared key. This partici-
pation takes place as part of the construction of the NTDR
backbone. We use the following Distributed Key Generation
(DKG) algorithm proposed in [17]:

1. Each clusterhead CHi chooses si in Zp and calculates
yi = gsi mod p.

2. CHi creates a (k, n) threshold sharing of the secret
value si by generating a polynomial function fi(z) =
∑k−1

l=0 ai,lx
l of degree at most k − 1 with fi(0) =

si mod p.

3. CHi uses a secure unicast channel to distributes the
subshare fi(j) to CHj (this means that CHi needs (n−
1) secure unicast channels, one to each of the other
clusterheads).

4. CHi broadcasts the values yi,l = gai,l , (l ∈ {0, .., k −
1}). Theses values will be used to verify the consis-
tency of the subshares sent by CHi. Let Al =

∏
i∈H yi,l,

where l ∈ {0, .., k − 1}.

5. Each CHj verifies that the subshare fi(j) received from

CHi is valid by checking that gfi(j) =
∏k−1

l=0 (yi,l)jl

.
If this equality holds then the value received from CHi

is correct. Otherwise CHj broadcasts a warning to
the other clusterheads that an inconsistent subshare has
been received from CHi. If at least k warnings are is-
sued concerning CHi then CHi must be isolated (oth-
erwise we label CHi as consistent).

6. Let H1 be the set of consistent clusterheads at the end
of the last stage. Each CHj in H1 computes xj =∑

i∈H1
fi(j).

At the end of the above protocol each consistent clusterhead
CHj holds a share xj of the DCA private key
SK =

∑
j∈H1

fj(0). The DCA public key is given by PK =∏
j∈H1

yj and can be computed from the broadcasts exchanged
in Step 4) above.

Note that the integrity of all broadcast messages in the boot-
strap procedure can be secured by digitally signing exchanged
messages using the private key associated with the offline cer-
tificate issued to each node. A full analysis of the security of
this protocol can be found in [17].

- 280 -

ICMU2006

3.7 Applying a DCA private key

We now demonstrate how a DCA private key can be ap-
plied to deliver a DCA security service. Recall that no single
clusterhead knows the DCA private key and it must not be
constructed during any application. Consider the case of a
node who wishes the DCA to digitally sign a request REQ.
When the node’s clusterhead receives the request it forwards
it to the backbone. Any other clusterhead that receives the re-
quest uses his share of SK to sign the request and produces a
signature share, before sending it back to the requesting node.
Once the node has verified k signature shares it can use them
to construct the DCA signature on REQ. This process can be
realized by using a threshold signature scheme.

We first present a variant of the digital signature standard
(DSS), proposed in [16]:

• Let x ∈ Zq be the private key. Let y = gxmod p. The
public key is then given by (p, q, g, y);

• To sign message M , first compute m = h(M), gener-
ate a random number e ∈ Zq and then compute:

1. γ = (ge mod p) mod q;

2. δ = γx + me mod q;

The signature on message M is given by (γ, δ);
• To verify (γ, δ), check that:

γ = (gδ/my−γ/mmod p)(mod q).

We adopt the following (k, n) threshold signature scheme,
which was proposed in [16] and is based on the preceding
variant of DSS. Let H2 ⊆ H1 (where |C1| ≥ k) be the set of
clusterheads available to assist in signing request REQ.

1. We first need to generate a random value e in a dis-
tributed way. The clusterheads in H2 thus run an in-
stance of the DKG algorithm (Section 3.6). Assuming
that there are sufficient consistent clusterheads, the re-
sult is a subset H3 of consistent clusterheads such that
each CHi ∈ H3 has a share ei of a random value e and
there exist the following public values: τ = ge mod p,
γ = τ mod q, and Bl =

∏
i∈H3

gbi,l , where l ∈
{0, .., k−1} and bi,l are CHi’s polynomial coefficients.
Note that e is not revealed to any clusterhead during this
process.

2. Each CHi in H3 computes δi = γxi+h(REQ)ei mod q

and sends it to the requesting node. Note that |H3| must
be bigger than k

3. Upon receiving each δl, the requesting node checks the
consistency of the value by verifying that
gδl = (y

∏k−1
j=1 (Aj)lj)γ(τ

∏k−1
j=1 (Bj)lj)h(REQ)

4. The requesting node computes δ by applying Lagrange
Formula to {δi} as follows δ =

∑k
j=1

∏
d�=j

id

id−ij
δij

for any CHi1 , ..., CHik
∈ H3

Note that the DKG of parameter e is independent of REQ, so
could be done prior to the reception of the request during idle
time on the clusterhead backbone. Further, the integrity of
each message sent in Step 2) can be secured by using digital
signature.

3.8 DCA Clusterhead join

In this section we show how to add a new clusterhead to
the NTDR backbone in such a way that it becomes part of the
DCA. This operation could either take place during the ex-
change of the signaling messages when the new entity joins
the backbone, or take place independently, soon after the back-
bone join has been accomplished. Either way, the new clus-
terhead requires a share of the existing DCA private key.

After bootstrapping, assume that there are n clusterheads
who hold DCA private key shares. Each of these cluster-
heads retains knowledge of one of the n secret polynomials
that were used during bootstrapping. We will label any clus-
terhead with knowledge of one of these polynomials as an
active clusterhead and refer to n as the active threshold. The
DCA clusterhead join protocol requires that there are n active
clusterheads and runs as follows for a new clusterhead CHl:

1. Each active clusterhead creates a new subshare in the
same way as during Step 3) of the bootstrapping. In
other words, CHi generates a subshare fi(l). This sub-
share is then securely unicast from CHi to CHl (if
CHl is new to the network then this is done by by en-
crypting it with the public key corresponding to the of-
fline certificate held by CHl).

2. CHk computes their share of the DCA private key as
xl =

∑n
i=1 fi(l).

Note that after this protocol has been run, CHl possesses a
share xl of SK but does not have knowledge of any of the
bootstrap secret polynomials. We refer to clusterheads of this
type as passive clusterheads, since they can assist in providing
DCA services but cannot assist in new DCA clusterhead joins.

It is important to maintain n active clusterheads at all times,
in order to support new clusterhead joins. If one of the active
clusterheads is lost then a passive clusterhead must immedi-
ately be “promoted” to replace the departing clusterhead. If
active clusterhead CHi leaves then passive clusterhead CHl

can be promoted by any k remaining active clusterheads as
follows:

1. Each of the k active clusterheads CHj securely uni-
casts fi(j) to CHl. (This is a value that was unicast
from CHi to CHj during the bootstrap protocol.)

2. CHk reconstructs fi by polynomial interpolation.

Note that the timely information that an active clusterhead has
left, and its identity, are both easily obtained from the regular
beacon messages that are exchanged between clusterheads.
This allows the above protocol to ensure that we always have
n active clusterheads in our DCA.

3.9 DCA Clusterhead eviction

A clusterhead eviction could happen as a result of normal
operational reasons such as instant unavailability or commu-
nication failure, or security reasons such as cheating, node
compromise, or identification failure. These two cases have
slightly different implications. If the reason for eviction is un-
clear then we should assume the latter case and consider the
clusterhead compromised.

- 281 -

ICMU2006

If a clusterhead is evicted for operational reasons and is not
regarded as a security vulnerability then it suffices to check
whether the evicted clusterhead is active or passive. If it is
passive then no action is required. If it is active then the pro-
motion protocol of Section 3.8 should be run to elect a new
active clusterhead.

If a clusterhead is evicted for security reasons then the share
of the DCA private key must be considered compromised. If
the evicted clusterhead is active then we must assume like-
wise that the associated secret polynomial is compromised.
There are several different options:

• One option is just to accept a degree of risk. Since k

clusterheads are required to provide DCA services, the
compromise of one clusterhead means at worst that it
still requires k − 1 remaining clusterheads to collude
with the evicted clusterhead before the DCA private
key can be obtained. In some environments this might
be acceptable. It may be the case that it requires a cer-
tain number of evictions to take place before the system
is no longer deemed operational.

• At the other end of the scale, if a clusterhead compro-
mise is regarded as extremely sensitive then the whole
DCA could be bootstrapped again. This not only has
implications with respect to communication cost, but
potentially means that all existing online certificates would
require renewal under the new DCA key pair.

• It is possible to design a DCA in which DCA sharehold-
ers can be evicted by adopting a threshold scheme that
offers disenrollment capabilities (for example [2], [5]).
However, such schemes typically only allow a limited
number of evictions and increase the storage require-
ments of each clusterhead.

• A more acceptable compromise is probably to run the
share refresh protocol that we describe in Section 3.10.
This involves a similar communication cost to boot-
strapping but does not change the DCA private key.

In most of the above scenarios it is still necessary to first run
the promotion protocol in the event that the evicted cluster-
head is active.

3.10 Refreshing DCA clusterhead shares

It is good practice to periodically refresh the DCA private
key shares. We note that it is desirable to perform this pro-
cess more often than refreshing the private key (which essen-
tially requires the system to be bootstrapped once again). The
purpose of the share refresh protocol is thus to refresh the
shares without changing the associated private key SK that
they protect. This process is sometimes referred to as proac-
tive secret sharing [9] and has been proposed as countermea-
sure to mobile adversaries [14], who attempt to compromise
clusterheads over a period of time.

Our share refresh protocol is based on the bootstrap proto-
col and uses the underlying idea of [9]. Let n be the number
of active clusterheads and m be the total number of cluster-
heads.

1. Each active clusterhead CHi creates a (k,m) threshold
sharing of the secret value 0 by generating a polynomial
function hi(z) =

∑k−1
l=1 bi,lx

l of degree at most k − 1.
Note that hi(0) = 0 mod p.

2. CHi uses a secure unicast channel to distributes the
subshare hi(j) to clusterhead CHj .

3. CHi broadcasts the values yi,l = gbi,l , (l ∈ {0, .., k −
1}).

4. Each CHj verifies that the subshare hi(j) received from

CHi is valid by checking that ghi(j) =
∏k−1

l=0 (yi,l)jl

.
If this equality holds then the value received from CHi

is correct. If not then CHj issues a warning. If any
CHi has been the target of a warning then they are
asked to repeat from Step 1).

5. Once there are no active warnings, each CHj computes
x′

j = xj +
∑n

i=1 hi(j). Active clusterhead CHi re-
freshes its secret polynomial to f ′

i(z) = fi(z) + hi(z).

At the end of the above protocol each active clusterhead CHj

holds a share x′
j of the DCA private key SK ′ = SK +

∑n
j=1 hj(0) = SK + 0 = SK.
Note that the above share refresh protocol requires a simi-

lar communication cost to the bootstrap protocol on which it
is based. One way of reducing this could be to simplify the
protocol by using just a few of the active clusterheads (possi-
bly just one). This would still result in all DCA clusterhead
shares being refreshed, although not all secret polynomials
would be refreshed. It also leaves the problem of which ac-
tive clusterheads to trust with such a role in the share refresh
protocol.

4 Alternative approaches

We now briefly review a number of alternative approaches
to distributing CA services in an ad hoc network.

In [23] a threshold DCA was proposed. This system also
uses a version of threshold DSS. In contrast to our shared key
generation, this system is initialized off-line by a dealer who
issues DCA private key shares to a collection of special server
nodes. Protocols for dynamic node management to support
this DCA were not proposed.

Another approach was taken in [11], where any node can
play the role of server. In this approach a dealer (which is a
mobile node) initializes k nodes with shares of a RSA-based
private key, which these nodes then propagate through the
network. If a node wants to sign a request by the DCA, a
threshold of nodes must be in the vicinity (one routing hop).
A join protocol was proposed that involves the cooperation of
k existing nodes and two rounds of secure unicast exchange.
This approach requires a dealing node to be entrusted with the
DCA private key.

In [3] a DCA was proposed for cluster-based ad hoc net-
works which, like our scheme, uses clusterheads as DCA share-
holders. However explicit clusterhead join protocols were not
proposed. Moreover, in order to grant affiliation status to clus-
terheads, this scheme relies on a trust relationship based on

- 282 -

ICMU2006

warranty certificates issued by the nodes themselves. Hence,
the realization of such a proposition is based on whether such
a trust relationship amongst nodes exists.

An alternative to establishing a structured DCA in ad hoc
networks is the self-organized public infrastructure proposed
in [10]. This approach is similar to PGP [8] in the way that the
nodes issue certificates to one other based on node relation-
ships. Each node keeps a local certificate repository which
contains certificates of other nodes selected in a defined way.
The drawbacks of this approach are that the use of the certifi-
cate repository leads to some overhead and that the approach
is based on transitive trust, which is not always scalable in the
case of large ad hoc networks.

5 Conclusion

In this paper we have proposed a distributed certificate au-
thority designed to provide public key services in an NTDR
ad hoc network. We have outlined a number of supporting
protocols, largely based on established techniques, for cre-
ating and running such services in a dynamic environment.
While this system has been designed for operation within an
NTDR security architecture, most of the techniques could be
adapted for deployment in any cluster-based ad hoc network
and so it is hoped that this system will be of wider interest.

REFERENCES

[1] B. Awerbuch, D. Holmer, C. Nita-Rotaru, and
H. Rubens. An on-demand secure routing protocol resi-
lent to byzantine failures. In ACM Workshop on Wireless
Security (WiSe 2002), September 2002.

[2] S.G. Barwick, W.-A. Jackson, and K.M. Martin. Up-
dating the parameters of a threshold scheme by mini-
mal broadcast. IEEE Trans. Inf. Theory, 51(2):620–633,
2005.

[3] M. Bechler, H. J. Hof, D. Kraft, F. Pahlke, and L. Wolf.
A cluster-based security architecture for ad hoc net-
works. In IEEE INFOCOM, 2004.

[4] B. Blakley. Safeguarding cryptographic keys. In Pro-
ceedings AFIPS 1979 National Computer Conference,
pages 313–317, June 1979.

[5] B. Blakley, G.R. Blakley, A. Chan, and J. Massey.
Threshold schemes with disenrollment. In Adv. in Cryp-
tology - CRYPTO’92, volume 740 of Lecture Notes
in Computer Science, pages 540–548. Springer-Verlag,
1993.

[6] S. Buchegger and J.Y. Le Boudec. Cooperative rout-
ing in mobile ad-hoc networks: Current efforts against
malice and selfishness. In Mobile Internet Workshop, In-
formatik 2002, Lecture Notes on Informatics. Springer-
Verlag, October 2002.

[7] B. Dahill, B. N. Levine, E. Royer, and C. Shields. A
secure routing protocol for ad hoc networks. In Pro-
ceedings of the Tenth Conference on Network Protocols
(ICNP), November 2002.

[8] S. Garfinkel. PGP: Pretty Good Privacy. O’Reilly &
Associates, 1995.

[9] Amir Herzberg, Stanislaw Jarecki, Hugo Krawczyk, and
Moti Yung. Proactive secret sharing or: How to cope
with perpetual leakage. Lecture Notes in Computer Sci-
ence, 963:339–352, 1995.

[10] J. Hubaux, L. Buttyan, and S. Capkun. The quest for
security in mobile ad hoc networks.

[11] Jiejun Kong, Petros Zerfos, Haiyun Luo, Songwu Lu,
and Lixia Zhang. Providing Robust and Ubiquitous
Security Support for Wireless Mobile Networks. In
Ninth International Conference on Network Protocols
(ICNP’01), pages 251–260, 2001.

[12] S. Lee, B. Han, and M. Shin. Robust routing in wire-
less ad hoc networks. In 2002 International Conference
on Parallel Processing Workshops (ICPPW’02), August
2002.

[13] P. Michiardi and R. Molva. Ad hoc network security,
2003. P. Michiardi and R. Molva, Ad hoc network se-
curity, ST Journal of System Research, Volume 4, N1,
March 2003.

[14] R. Ostrovsky and M. Yung. How to withstand mobile
virus attacks. In Proceedings of the 10th ACM Sym-
posium on principles of Distributed Computing, pages
51–59, 1991.

[15] P. Papadimitratos and Z. J. Haas. Secure link state rout-
ing for mobile ad hoc networks. In IEEE Workshop on
Security and Assurance in Ad hoc Networks, Orlando,
FL, January 2003.

[16] C. Park and K. Kurosawa. New elgamal type threshold
digital signature scheme. IEICE Trans. Fundamentals,
E79-A(1):86–93, 1996.

[17] T. P. Pederson. A threshold cryptosystem without a
trusted party. In Eurocrypt ’91, volume 547 of Lecture
Notes in Computer Science, pages 522–526. Springer-
Verlag, 1991.

[18] A. Shamir. How to share a secret. Communications of
the ACM, 22(11):612–613, 1979.

[19] V. Varadharajan. Security for cluster based ad-hoc net-
works, July 2002. Tech Report, Loria.

[20] K. Vesa. Security in ad hoc networks, 2000. Karpi-
joki, Vesa. Security in Ad hoc Networks, In Proceedings
of the Helsinki University of Technology, Seminars on
Network Security, Helsinki, Finland, 2000.

[21] G. M. Zapata and N. Asokan. Securing ad-hoc routing
protocols. In ACM Workshop on Wireless Security (WiSe
2002), September 2002.

[22] J. Zavgren. NTDR Mobility Management Protocols
and Procedures, November 1997. In Proceedings of
the IEEE Military Communications Conderence (MIL-
COM’97).

[23] Lidong Zhou and Zygmunt J. Haas. Securing ad hoc
networks. IEEE Network, 13(6):24–30, 1999.

- 283 -

ICMU2006

